化学工业与工程  2017, Vol. 34 Issue (6): 62-69
乙酸异丙酯-异丙醇-DMSO的等压汽液相平衡和萃取精馏模拟
李嘉琪1, 丁辉2, 高郁杰3, 刘涉江2     
1. 天津大学化工学院, 精馏技术国家工程研究中心, 天津 300072;
2. 天津大学环境科学与工程学院, 天津 300072;
3. 天津市环境保护科学研究院, 天津 300191
摘要:在101.3 kPa压力下,采用汽液平衡釜测定了二元物系异丙醇+二甲基亚砜(DMSO)、乙酸异丙酯+DMSO和三元物系异丙醇+乙酸异丙酯+DMSO的汽液平衡数据。利用Van Ness点校验法检验以上气液平衡数据,结果表明,数据符合热力学一致性。采用NRTL、Wilson和UNIQUAC活度系数模型对二元数据进行了拟合,并进行了三元物系汽液相平衡数据预测,结果表明,回归数据和实验数据吻合良好。Wilson模型的预测结果优于NRTL和UNIQUAC模型。一定量DMSO的加入可消除异丙醇和乙酸异丙酯的共沸点,因此,DMSO可作为一种有效的萃取剂来萃取精馏分离此二元物系。然后,通过流程模拟软件Aspen Plus,使用获得的二元交互作用参数对三元系统的萃取精馏进行了模拟。讨论了在不同的操作条件(塔板数、进料位置、溶剂比和回流比)下,异丙醇和乙酸异丙酯分离的情况,得到了最适宜的操作条件。
关键词异丙醇;    乙酸异丙酯;    二甲基亚砜;    汽液相平衡    
Vapor-Liquid Equilibria and Simulation of Extractive Distillation for Ternary Mixtures of Isopropyl Alcohol, Isopropyl Acetate and DMSO
Li Jiaqi1, Ding Hui2, Gao Yujie3, Liu Shejiang2     
1. School of Chemical Engineering and Technology, National Engineering Research Center of Distillation Technology, Tianjin 300072, China;
2. School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China;
3. Tianjin Academy of Environmental Sciences, Tianjin 300191, China
Abstract: The vapor-liquid equilibrium (VLE) data for the binary system isopropyl alcohol+dimethyl sulfoxide (DMSO), isopropyl acetate+DMSO and ternary system isopropyl alcohol+isopropyl acetate+DMSO were measured with a VLE modified Othmer still at 101.3 kPa. The experimental data were proved to be thermodynamically consistent when the point to point consistency test of Van Ness test was applied. The binary experimental data were correlated with the NRTL, Wilson and UNIQUAC activity coefficient models. Then, the ternary VLE data were predicted with the obtained binary interaction parameters. The results indicate that the calculated values are in good agreement with the experimental data. The results predicted by the Wilson models are slight better than those of other models. The binary azeotrope of isopropyl alcohol and isopropyl acetate was eliminated when added a certain amount of DMSO. Therefore, DMSO is a potential extractive agent to separate the azeotrope. Then, the extractive distillation of the ternary system was simulated using obtained binary interaction parameters with the process simulation software Aspen Plus. The separation conditions of isopropyl alcohol and isopropyl acetate with different operational parameters (stage number, feed stage, solvent ratio and reflux ratio) were discussed and the optimum conditions were achieved.
Key words: isopropyl alcohol;     isopropyl acetate;     dimethyl sulfoxide;     vapor liquid equilibrium    

异丙醇是一种重要的化工原材料,可广泛应用于农药、电子、医药、化工等多个领域[1-4]。乙酸异丙酯,对多种合成树脂都有很好的溶解作用,在溶剂和医学萃取剂等方面受到了越来越多的关注[5-6]。乙酸异丙酯传统的工业生产方法为乙酸与异丙醇通过液相酯化法合成[7-8]。有文献报导,通过乙酸异丙酯催化加氢也可以合成乙醇和异丙醇等高附加值的产品[9]。在上述的工业过程中,异丙醇与乙酸异丙酯常会混合在一起,无法将二者完全分离。随着工业上对产品纯度的要求日益严格,这2种物质的精密分离是十分必要的。

由于异丙醇和乙酸异丙酯混合后会形成最低共沸点混合物[10],普通精馏难以将其分开,可以通过设计合适的萃取精馏工艺过程来将二者进行分离,其中萃取剂的选择为萃取精馏的关键。有文献报道称[11-12],异丙醇与乙酸异丙酯形成的二元共沸体系可以通过加入适量作为萃取剂的离子液体来打破,但大部分离子液体高黏度、高成本的弊端限制了它们大规模的应用[13],而二甲基亚砜具有低黏度、低成本、高极性、高沸点、较强的热稳定性、与水混溶等特性[14-15]。在已有的文献中[16-17],DMSO能有效打破醇类和酯类共沸混合物的共沸。因此,本研究选用了DMSO作为萃取剂来改变乙酸异丙酯和异丙醇共沸混合物的相对挥发度以达到分离两者的目的。

三元物系异丙醇(1)+乙酸异丙酯(2)+DMSO(3)和相应的二元物系的汽液平衡数据对于设计合理的萃取精馏过程十分重要。到目前为止,除异丙醇(1)+乙酸异丙酯(2)的汽液平衡数据已有报道,本实验中其他研究尚属空白[11, 18-20]。本研究对三元物系异丙醇(1)+乙酸异丙酯(2)+DMSO(3)和相应的二元物系进行了热力学的研究。采用Van Ness点检验来验证试验结果的可靠性。然后,用NRTL、Wilson和UNIQUAC模型对二元汽液平衡数据进行拟合并获取二元相互作用参数,采用这些参数对三元汽液平衡实验进行预测和对比。然后,根据上述实验得到的二元相互作用参数,以DMSO作为萃取剂,采用Aspen Plus软件对萃取精馏的过程进行了模拟[21-23]。通过对模拟结果进行分析,选择了最适宜的操作条件,包括塔板数、混合物和萃取剂进料位置、溶剂比和回流比等。这些操作条件为大规模的工业生产提供了理论指导。

1 试验部分 1.1 实验材料

异丙醇,色谱纯,质量分数≥99.9%;丙醇,色谱,天津市科威科技有限公司;乙酸异丙酯,色谱纯,质量分数>99.8%,梯希爱(上海)化成工业发展有限公司;DMSO,色谱纯,质量分数>99.8%,阿拉丁试剂。经卡尔·费歇尔滴定测得试剂中不含杂质水,又经色谱检测,无杂峰。因此,所有试剂均未经进一步的处理。

1.2 测定装置

采用1个改进的Othmer汽液平衡釜来测定汽液平衡数据,这个汽液平衡釜包括平衡室、气相取样口、液相取样口、加热棒和冷凝器。采用精度为±0.05 K的精密温度计来测量温度,此实验装置的可靠性已在之前的研究得到验证[24]。每次实验时,在平衡室中分别加入40 mL不同配比的混合物,常压下加热回流。温度达到稳定后,再维持0.5 h,以确保达到平衡状态。之后,分别对液相和气相取样3次进行组成分析。当测量值的偏差小于0.5%时记录下平均值作为实验数据。

1.3 分析方法

实验采用GC-2060气相色谱仪和N2000色谱工作站对平衡的气相和液相进行分析测定。检测器选用氢火焰检测器(FID),高纯氮作为载气。色谱条件为:FFAP毛细管色谱柱(30 m×0.25 mm×0.5 μm);汽化室温度:200 ℃,检测器温度:200 ℃;柱温:起始温度40 ℃,保持6 min,程序升温速率为40 ℃/min,终温为140 ℃,保持10 min;柱前压为0.1 MPa。每次进行测试分析的样品体积为0.1 μL。

2 结果和讨论 2.1 VLE数据

常压下,二元物系异丙醇(1)+ DMSO(3),乙酸异丙酯(2)+DMSO(3)和三元物系异丙醇(1)+乙酸异丙酯(2)+DMSO(3)(DMSO加入量为60%)的汽液相平衡数据见表 1~表 3。表中:yixi是组分气相和液相的摩尔分数;γi是组分i的活度系数,φi代表组分i在混合气相中的逸度系数。汽液平衡相图见图 1图 2图 1图 2T代表平衡温度。

表 1 101.3 kPa下异丙醇(1)+二甲基亚砜(3)的二元汽液相平衡数据 Table 1 VLE data for binary system of isopropyl alcohol (1)+DMSO (3) at 101.3 kPaa
T/Kx1y1γ1γ3φ1φ3
355.331.00001.00001.0000
357.510.90320.99831.01100.69030.97470.9532
359.140.84810.99721.01110.67180.97510.9538
360.750.80510.99611.00170.67740.97540.9543
364.710.70910.99250.98030.73010.97630.9556
368.770.61380.98690.97520.80350.97710.9569
374.240.52250.97760.94140.87980.97820.9586
376.780.48320.97260.93120.89450.97870.9593
381.240.41490.96230.92950.90620.97950.9606
386.470.35610.94830.90780.91790.98070.9620
389.520.32070.93710.90880.94090.98090.9628
398.610.24910.90150.86830.94960.98260.9650
405.210.20090.86750.86740.94880.98330.9664
414.020.15120.80450.85540.97610.98450.9683
425.630.10220.69910.83890.97780.98600.9704
429.390.08900.65600.83230.98120.98640.9711
437.480.06350.54810.82320.98520.98770.9724
441.940.04960.46950.82581.00230.98800.9731
450.410.02860.31200.81101.00520.98900.9743
463.38001
  a标准不确定度为u(T)=0.05 K, u(P)=0.1 kPa, u(y1)=u(x1)=0.004。
表 2 101.3 kPa下乙酸异丙酯(2)+二甲基亚砜(3)的汽液相平衡数据 Table 2 VLE data for binary system of isopropyl acetate (2)+DMSO (3) at 101.3 kPaa
T/Kx2y2γ2γ3φ2φ3
361.451.00001.00001.0000
363.590.92070.99351.01722.43560.96450.9534
366.560.80120.98491.06001.97810.96530.9544
369.360.67690.97761.14701.59790.96610.9553
370.720.61440.97691.21401.30220.96640.9558
374.060.48380.96481.38431.28630.96730.9568
376.180.42370.95771.47871.26730.96780.9575
377.740.38170.95601.56951.15200.96820.9579
381.610.30190.94321.76291.12560.96920.9591
383.180.27200.94121.87331.04940.96980.9595
384.960.25410.93551.90151.04710.96990.9600
386.620.23410.93011.96611.03560.97060.9605
388.170.21990.92542.00061.02190.97070.9609
392.920.17910.90622.13491.01910.97170.9622
400.530.13410.87052.28061.00880.97330.9641
413.460.08590.78712.40891.00450.97570.9671
425.980.05510.67152.47811.00250.97810.9697
444.020.02660.42412.32111.00140.98040.9731
456.010.00980.18912.29941.00060.98190.9750
463.38001.0000
  a标准不确定度为u(T)=0.05 K, u(P)=0.1 kPa, u(yi)=u(xi)=0.004。
表 3 101.3 kPa下异丙醇(1)+乙酸异丙酯(2)+二甲基亚砜(3)三元体系的汽液相平衡数据 Table 3 VLE data for ternary system of isopropyl alcohol (1) + isopropyl acetate (2) + DMSO(3) at 101.3 kPaa
T/Kx1x2x3x1bx2 by1y2y3y1 cy2 c
377.520.01910.36640.61450.04950.95050.02540.93350.04110.02650.9735
377.820.03760.34370.61870.09860.90140.04790.91020.04190.05000.9500
378.220.05540.32400.62060.14600.85400.07690.88100.04210.08030.9197
378.500.07510.30740.61750.19630.80370.10890.84960.04150.11360.8864
378.700.09740.29410.60850.24880.75120.14280.81640.04080.14890.8511
379.090.11500.27210.61290.29710.70290.17830.77970.04200.18610.8139
378.990.12540.26570.60890.32060.67940.19610.76280.04110.20450.7955
379.250.13850.25210.60940.35460.64540.21980.73930.04090.22920.7708
379.820.15310.23320.61370.39630.60370.25430.70360.04210.26550.7345
379.930.17550.21510.60940.44930.55070.30220.65670.04110.31520.6848
380.320.19240.19720.61040.49380.50620.34520.61250.04230.36040.6396
381.190.20800.17160.62040.54790.45210.39280.56320.04400.41090.5891
381.820.22440.15280.62280.59490.40510.43880.51610.04510.45950.5405
382.210.24630.13420.61950.64730.35270.49420.46190.04390.51690.4831
382.240.26740.11720.61540.69530.30470.54950.40580.04470.57520.4248
382.160.29280.09940.60780.74660.25340.61310.34360.04330.64080.3592
382.590.31590.07730.60680.80340.19660.68620.27190.04190.71620.2838
382.870.32640.05950.61410.84580.15420.73930.21740.04330.77280.2272
383.340.34620.03980.61400.89690.10310.81030.14750.04220.84600.1540
383.630.35640.02010.62350.94660.05340.87620.07950.04430.91680.0832
383.700.37440.01110.61450.97120.02880.91530.04260.04210.95550.0445
  a标准不确定度为u(T)=0.05 K, u(P)=0.1 kPa, u(yi)=u(xi)=0.004。 $^{\rm{b}}{x_i}\prime = {x_i}/\sum\limits_{i = 1}^N {{x_i}} ,{^{\rm{c}}}{y_i}\prime = {y_i}/\sum\limits_{i = 1}^N {{y_i}} $
图 1 101.3 kPa下异丙醇(1)+ DMSO(3)的T-x1(y1)相图 Figure 1 T-x1(y1)diagram for isopropyl alcohol (1)+DMSO (3) system at 101.3 kPa
图 2 101.3 kPa下乙酸异丙酯(2)+DMSO(3)的T-x2(y2)相图 Figure 2 T-x2(y2) diagram for isopropyl acetate (2)+DMSO (3) system at 101.3 kPa

表 1~表 3中所列的活度系数可通过式(1)进行计算。

${\varphi _i}P{y_i} = {\gamma _i}{x_i}P_i^{\rm{s}}\varphi _i^{\rm{s}}{\rm{exp}}\left( {\frac{{V_i^{\rm{L}}(P - P_i^{\rm{s}})}}{{RT}}} \right)$ (1)

式(1)中:R是气相常数,ViL是纯组分的摩尔体积。Pis是组分i的饱和蒸汽压,可以通过Antoine扩展方程来计算;φisφi分别代表纯组分和组分i在混合气相中的逸度系数,它们的数值可以通过Soave-Redlich-Kwong(SRK)方程来进行计算。因为在低压下 ${\rm{exp}}\left[ {\frac{{V_i^{\rm{L}}(P - P_i^{\rm{s}})}}{{RT}}} \right]$ 近似等于1,式(1)可以被简化为:

${\varphi _i}P{y_i} = {\gamma _i}{x_i}P_i^{\rm{s}}\varphi _i^{\rm{s}}$ (2)

因此,表 1表 2中列出的γi可以通过式(2)来获得。

2.2 热力学一致性测试

采用Van Ness点检验方法进行热力学一致性检验[25]。表达式如式(3):

$\Delta y = \frac{1}{N}\sum\limits_{i = 1}^N 100{\left| {y_i^{{\rm{exp}}} - y_i^{{\rm{cal}}}} \right|} $ (3)

其中N是试验点的个数,上标exp代表实验数据,上标cal代表NRTL,Wilson和UNIQUAC模型的拟合值。当平均绝对偏差Δy的值小于1时,实验数据热力学一致。

二元和三元气液相平衡数据的Van Ness测试的结果示于表 4。可以看出,系统的计算和测量之间的异丙醇气相摩尔分数平均绝对偏差Δy<0.8,这表明所有的汽液相平衡数据通过热力学一致性测试。

表 4 二元和三元体系Van Ness法热力学一致性检验结果 Table 4 Results of thermodynamic consistency test of Van Ness method for binary and ternary systems
SystemsWilsonNRTLUNIQUACResults
Isopropyl alcohol (1) + DMSO (3)
Δy10.20220.14820.1243Passed
Isopropyl acetate (2) + DMSO (3)
Δy20.24340.26100.2186Passed
Isopropyl alcohol (1) + isopropyl acetate (2) + DMSO (3)
Δy10.21630.59470.5099Passed
Δy20.25030.70220.7505Passed
2.3 数据拟合

在本实验中采用Aspen Plus中的NRTL,Wilson和UNIQUAC模型关联汽液相平衡数据。Aspen Plus中最大似然目标函数用于二元汽液相平衡数据的回归,可表示为式(4)。

$\begin{array}{l} F = \sum\limits_{i = 1}^N {\left[ {{{\left( {\frac{{P_i^{{\rm{exp}}} - P_i^{{\rm{cal}}}}}{{{\sigma _{\rm{P}}}}}} \right)}^2} + {{\left( {\frac{{T_i^{{\rm{exp}}} - T_i^{{\rm{cal}}}}}{{{\sigma _{\rm{T}}}}}} \right)}^2}} \right.} \\ \quad \quad + \left. {{{\left( {\frac{{x_{1,i}^{{\rm{exp}}} - x_{1,i}^{{\rm{cal}}}}}{{{\sigma _x}}}} \right)}^2} + {{\left( {\frac{{y_{1,i}^{{\rm{exp}}} - y_{1,i}^{{\rm{cal}}}}}{{{\sigma _y}}}} \right)}^2}} \right] \end{array}$ (4)

σ是相应参数的标准偏差,其中在汽液相平衡测定中所用到的压力σP、温度σT、液相摩尔分数σx、气相摩尔分数σy的标准偏差分别为0.1013 kPa、0.1 K、0.001和0.001。

实验中采用NRTL,Wilson和UNIQUAC模型对实验过程中得到的数据进行拟合,从而得到3种物质中任意2种物质的二元相互作用参数以及温度、压力、蒸汽和液体摩尔分数的均方根偏差(RMSD),具体数据如表 5所示。其中,乙酸异丙酯和异丙醇的交互作用参数采用Andreatta等[11]文章中报道的二元气液相平衡数据进行关联。从表 1~表 3中得知,计算数据与实验数据吻合良好,这表明上述3种模型模型适用于关联异丙醇-DMSO,乙酸异丙酯-DMSO二元物系。

表 5 二元物系的二元相互作用参数以及均方根偏差 Table 5 Correlated parameters and RMSD for binary systems
ModelCorrelation parametersRMSD
aijajibijbji δT/KaδP/kPabδx1cδy1d
Isopropyl alcohol (i) + isopropyl acetate (j)
NRTLe-6.37614.35342374.47-1447.040.080.02390.00000.0036
Wilsonf-4.37096.97601445.25-2586.150.080.02430.00000.0035
UNIQUACg3.4186-3.8933-1146.491221.970.080.02380.00000.0037
Isopropyl alcohol (i) + DMSO (j)
NRTLe3.3041-5.4220-1680.182473.130.220.07290.00030.0025
Wilsonf-1.66561.0551559.96-206.680.250.08560.00030.0042
UNIQUACg3.2563-0.7736-1731.62623.590.250.08760.00030.0020
Isopropyl acetate (i) + DMSO (j)
NRTLe-1.01652-0.7025587.7175541.82420.250.11480.00020.0054
Wilsonf3.1440-4.8432-1403.221539.260.230.09630.00020.0043
UNIQUACig3.103653-1.90805-1411.75773.32290.230.09870.00020.0037
   $^{\rm{a}}\delta T = {\left( {1/N \times \sum\limits_{i = 1}^N {{{\left( {T_i^{{\rm{exp}}} - T_i^{{\rm{cal}}}} \right)}^2}} } \right)^{1/2}}$ , $^{\rm{b}}\delta P = {\left( {1/N \times \sum\limits_{i = 1}^N {{{\left( {P_i^{{\rm{exp}}} - P_i^{{\rm{cal}}}} \right)}^2}} } \right)^{1/2}}$ , $^{\rm{c}}\delta {x_i} = {\left( {1/N \times \sum\limits_{i = 1}^N {{{\left( {x_i^{{\rm{exp}}} - x_i^{{\rm{cal}}}} \right)}^2}} } \right)^{1/2}}$ , $^{\rm{d}}\delta {y_i} = {\left( {1/N \times \sum\limits_{i = 1}^N {{{\left( {y_i^{{\rm{exp}}} - y_i^{{\rm{cal}}}} \right)}^2}} } \right)^{1/2}}$ , $^{\rm{e}}{\rm{NRTL,}}{\tau _{ij}} = {a_{ij}} + {b_{ij}}/T$ , the value of αij was fixed at 0.3,f Wilson, ln Aij=aij+bij/Tg UNIQUAC, τij=exp(aij+bij/T)。
2.4 数据预测

根据二元相互作用参数通过NRTL、Wilson和UNIQUAC模型可以预测出三元汽液相平衡数据,表 6列举了气相摩尔分数和平衡温度的实验值和回归值之间的最大和平均绝对偏差。结果表明,回归数据与实验数据吻合良好,表明这些模型可以准确地预测实验数据。图 3为加入DMSO与未加入DMSO时汽液相平衡数据的对比图,从图中可以得知,DMSO的加入会打破乙酸异丙酯和异丙醇二元物系的共沸。这表明对于此物系的分离,DMSO是一种较为理想的萃取剂。

表 6 异丙醇(1)+乙酸异丙酯(2)+DMSO (3)的气相摩尔分数以及平衡温度的最大偏差以及平均偏差 Table 6 Maximum and mean absolute deviations of vapor phase mole fraction and equilibrium temperature for system of isopropyl alcohol (1) + isopropyl acetate (2) + DMSO (3)
ModelMaximum absolute deviationsMean absolute deviations
ΔmaxTa/KΔmax y1bΔmaxy2bΔmaxy3bδTc/Kδy1dδy2dδy3d
NRTL1.280.01360.01520.00330.750.00590.00700.0014
Wilson0.770.00520.00490.00220.380.00220.00250.0009
UNIQUAC1.520.01460.01660.00400.930.00510.00750.0027
   $^{{\rm{a}}}{\Delta _{{\rm{max}}}}T = {\rm{max}}\left| {T_i^{{\rm{exp}}} - T_i^{{\rm{cal}}}} \right|$ , $^{\rm{b}}{\Delta _{{\rm{max}}}}y = {\rm{max}}\left| {y_i^{{\rm{exp}}} - y_i^{{\rm{cal}}}} \right|$ , $^{\rm{c}}\delta T = \left( {1/N} \right)\sum\limits_{i = 1}^N {\left| {T_i^{{\rm{exp}}} - T_i^{{\rm{cal}}}} \right|} $ , $^{\rm{d}}\delta y = \left( {1/N} \right)\sum\limits_{i = 1}^N {\left| {y_i^{{\rm{exp}}} - y_i^{{\rm{cal}}}} \right|} $
图 3 101.3 kPa下异丙醇(1)-乙酸异丙酯(2)-DMSO(3)的等压汽液平衡相图 Figure 3 Isobaric VLE diagram of isopropyl alcohol (1)+isopropyl acetate (2) +DMSO (3) at 101.3 kPa
3 萃取精馏实验的模拟

表 6可以得知,Wilson模型的拟合结果略优于NRTL和UNIQUAC过程,所以采用Wilson模型对异丙醇和乙酸异丙酯的萃取精馏过程进行模拟。观察了塔板数、进料位置、回流比、溶剂比对萃取精馏塔塔顶乙酸异丙酯摩尔分数和再沸器负荷的影响,如图 4~图 8所示,图 4~图 8xD代表萃取精馏塔塔顶乙酸异丙酯的质量分数,QR代表再沸器的负荷。因为异丙醇和DMSO的沸点相差很大,分离十分容易,所以对溶剂回收塔的条件不再详细说明。萃取精馏塔的初始模拟条件为:塔板数为60块,原料进料位置为第30块,溶剂进料位置为第10块,回流比为1,溶剂比为2.33。

图 4 塔板数对xDQR的影响 Figure 4 Influence of stage number on xD and QR
图 5 原料进料位置对xDQR的影响 Figure 5 Influence of binary mixture feed stage on xD and QR
图 6 溶剂进料位置对xDQR的影响 Figure 6 Influence of solvent feed stage on xD and QR
图 7 回流比对xDQR的影响 Figure 7 Influence of reflux ratio on xD and QR
图 8 溶剂比对xDQR的影响 Figure 8 Influece of entrainer to feed molar ratio on xD and QR
3.1 塔板数对萃取精馏模拟的影响

保持其他参数不变,考察了塔板数对分离过程的影响。选取塔板数为30~80,观察了萃取精馏塔塔顶乙酸异丙酯摩尔分数xD和再沸器负荷QR的变化,如图 4所示。结果表明,随着塔板数的增大,xD先增加后基本保持不变,在60块时取得最大值,能耗先增大后减小,然后基本稳定。综合考虑设备投资以及纯度要求,选择塔板数为60块。

3.2 进料位置对萃取精馏模拟的影响

原料以及DMSO的进料位置对萃取精馏的影响如图 5~图 6所示。结果表明,随着原料进料位置的增高,xD先升高,后略有降低,在第32块塔板处取得最大值。而xD随溶剂进料位增高先基本不变后降低,但是,当溶剂进料位置设置的过高时,容易被上升的蒸汽夹带到塔顶的冷凝器中,影响塔顶产品的纯度。结合能耗和纯度考虑,最适宜原料进料位置为第32块塔板,最适宜溶剂进料位置为第6块塔板。

3.3 回流比对萃取精馏的影响

回流比对萃取精馏模拟的影响见图 7。随着回流比增加,xD先升高,后降低,在2.1处取得最大值。而再沸器负荷随回流比增加而增加。综合考虑,选取回流比为2.1。

3.4 溶剂比对萃取精馏的影响

溶剂比(溶剂与原料液进料的物质的量之比)对萃取精馏的影响如图 8所示。随着溶剂比的升高,再沸器负荷先降低后升高,塔顶产品纯度先升高后降低。在2.33处,QR最低,xD最高,所以溶剂比选择2.33。

本次模拟连续萃取精馏分离异丙醇-乙酸异丙酯共沸体系得到了最适宜的操作参数:塔板数为60块,原料进料位置为第32块,溶剂进料位置为第6块,回流比为2.1,溶剂比为2.33。在此操作条件下,萃取精馏塔塔顶得到的乙酸异丙酯的摩尔分数为99.60%。

4 结论

1) 测定了101.3 kPa下,二元物系异丙醇+DMSO,乙酸异丙酯+DMSO和三元物系异丙醇+乙酸异丙酯+DMSO在101.3 kPa下的汽液相平衡数据。通过Van Ness点检验得知,实验数据是具有热力学一致性的。

2) 采用NRTL,Wilson和UNIQUAC模型对二元数据进行拟合。结果表明,拟合数据与实验数据吻合良好。获得的二元交互作用参数被用来预测三元数据,结果表明,预测结果和实验结果之间的偏差在合理的范围内。

3) 用获得的二元相互作用参数通过Wilson模型预测三元系统的异丙醇+乙酸异丙酯+DMSO的汽液相平衡数据。结果表明,当加入DMSO的摩尔分数为30%时,异丙醇和乙酸异丙酯二元物系的汽液相平衡被打破。因此,对异丙醇和乙酸异丙酯的分离和萃取精馏来说,DMSO是一个较理想的萃取剂。

4) 通过Aspen Plus软件,采用DMSO为萃取剂,对异丙醇和乙酸异丙酯共沸物进行了萃取精馏分离模拟的研究。确定了最适宜的工艺条件,为分离过程的设计操作等提供了一定的理论指导。

参考文献
[1] 高江霞. 病房呼叫器的带菌状况及异丙醇消毒湿巾的消毒效果[J]. 甘肃医药, 2015, 34(5): 385–386.
Gao Jianxia. The study of Ward pager and the disinfection effect of isopropyl alcohol disinfection wet wipes[J]. Gansu Medicine, 2015, 34(5): 385–386.
[2] Yamashita K, Tanaka T, Hayashi M. Use of isopropyl alcohol as a solvent in Ti(O-i-Pr) 4-catalyzed Knöevenagel reactions[J]. Tetrahedron, 2005, 61(33): 7981–7985. DOI: 10.1016/j.tet.2005.06.008
[3] 王彦民, 张付申, 宋凤敏, 等. 废弃电子塑料在超临界异丙醇中的液化特性[J]. 中国环境科学, 2014(12): 3142–3149.
Wang Yanmin, Zhang Fushen, Song Fengmin, et al. The liquefaction characteristics of electronic waste plastic in supercritical isopropyl alcohol[J]. China Environmental Science, 2014(12): 3142–3149.
[4] Yilgor E, Atilla G E, Ekin A, et al. Isopropyl alcohol:An unusual, powerful, 'green' solvent for the preparation of silicone-urea copolymers with high urea contents[J]. Polymer, 2003, 44(26): 7787–7793. DOI: 10.1016/j.polymer.2003.10.048
[5] 补朝阳. 乙酸异丙酯的合成[J]. 化学研究, 2014, 25(6): 601–603.
Bu Chaoyang. The synthesis of isopropyl acetate[J]. Chemical research, 2014, 25(6): 601–603.
[6] 朱勇强, 周仕林, 谢来苏. 动态滤水实验方法的探讨[J]. 中国造纸, 1999(2): 26–29.
Zhu Yongqiang, Zhou Shilin, Xie Laisu. The discusstion of dynamic filtering of water[J]. China Pulp & Paper, 1999(2): 26–29.
[7] 许前会, 张秋荣. 连续反应精馏合成乙酸异丙酯[J]. 辽宁化工, 2003, 32(12): 510–511.
Xu Qianhui, Zhang Qiurong. The synthesis of isopropyl acetate by the continuous reaction distillation[J]. Liaoning chemical, 2003, 32(12): 510–511. DOI: 10.3969/j.issn.1004-0935.2003.12.002
[8] Zhang B, Yang W, Hu S, et al. A reactive distillation process with a sidedraw stream to enhance the production of isopropyl acetate[J]. Chemical Engineering & Processing, 2013, 70(3): 117–130.
[9] 李亚楠. 乙酸异丙酯催化加氢制备异丙醇和乙醇工艺研究[D]. 辽宁大连: 大连理工大学, 2014.
Li Yanan. The study of Isopropyl acetate preparation isopropyl alcohol and ethanol by catalytic hydrogenation technology[D]. Liaoning Dalian:Dalian University of Technology, 2014(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10141-1015569159.htm
[10] Lee L S, Kuo M Z. Phase and reaction equilibria of the acetic acid-isopropanol-isopropyl acetate-water system at 760 mmHg[J]. Fluid Phase Equilibria, 1996, 123(s1/2): 147–165.
[11] Andreatta A E, Arce A, Rodil E, et al. Physical properties and phase equilibria of the system isopropyl acetate+isopropanol+1-octyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide[J]. Fluid Phase Equilibria, 2010, 287(2): 84–94. DOI: 10.1016/j.fluid.2009.09.015
[12] Andreatta A E, Francisco M, Rodil E, et al. Isobaric vapour-liquid equilibria and physical properties for isopropylacetate+isopropanol+1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide mixtures[J]. Fluid Phase Equilibria, 2011, 300(s1/2): 162–171.
[13] Marcus Y. Ionic and molar volumes of room temperature ionic liquids[J]. Journal of Molecular Liquids, 2015, 209: 289–293. DOI: 10.1016/j.molliq.2015.06.015
[14] Yang X, Zhang X, Guo Z, et al. Effects of incompatible substances on the thermal stability of dimethyl sulfoxide[J]. Thermochimica Acta, 2013, 559(559): 76–81.
[15] He F, Chao S, Gao Y, et al. Fabrication of hydrophobic silica-cellulose aerogels by using dimethyl sulfoxide (DMSO) as solvent[J]. Materials Letters, 2014, 137(137): 167–169.
[16] Wang Q, Zeng H, Song H, et al. Vapor-Liquid equilibria for the ternary system acetonitrile+1-propanol+dimethyl sulfoxide and the corresponding binary systems at 101.3 kPa[J]. J Chem Eng Data, 2010, 55(11): 5271–5275. DOI: 10.1021/je100033s
[17] Zhang X, Liu Y, Jian C, et al. Experimental isobaric vapor-liquid equilibrium for ternary system of sec-butyl alcohol+sec-butyl acetate+N, N-dimethyl formamide at 101.3 kPa[J]. Fluid Phase Equilibria, 2014, 383: 5–10. DOI: 10.1016/j.fluid.2014.09.021
[18] Mato F, Cepeda E. Equilibrio liquid-vapor de mezclas binarias formadas por alcoholes y sus esteres del acido acetico. I. Sistemas con metanol, etanol, n-propanol, i-propanol a 760 mmHg[J]. Anal Quim Ser A, 1984, 80: 338–342.
[19] Belova T P, Epifanova O A, Vanchugova T M, et al. Oniitekhim, Code 1115 KHP-D 1983, 83:1-10
[20] Casimiro F M, Constantino D S M, Pereira C S M, et al. Vapor-Liquid equilibrium of binary mixtures containing isopropyl acetate and alkanols at 101.32 kPa[J]. Journal of Chemical & Engineering Data, 2015, 60(11): 3181–3186.
[21] 谢扬, 沈庆扬. Aspen Plus化工模拟系统在精馏过程中的应用[J]. 化工生产与技术, 1999, 6(3): 17–22.
Xie Yang, Shen Qingyang. The application of chemical simulation system in distillation process[J]. Chemical Production and Technology, 1999, 6(3): 17–22.
[22] 孙兰义. 化工流程模拟实训——Aspen Plus教程[M]. 北京: 化学工业出版社, 2012
Sun Lanyi. Chemical engineering process simulation using-Aspen Plus[M]. Beijing: Chemical Industry Press, 2012.
[23] Langston P, Hilal N, Shingfield S, et al. Simulation and optimisation of extractive distillation with water as solvent[J]. Chemical Engineering and Processing:Process Intensification, 2005, 44(3): 345–351. DOI: 10.1016/j.cep.2004.05.008
[24] Hou J, Xu S, Ding H, et al. Isobaric vapor-liquid equilibrium of the mixture of methyl palmitate and methyl stearate at 0.1 kPa, 1 kPa, 5 kPa, and 10 kPa[J]. Journal of Chemical & Engineering Data, 2012, 57(10): 2632–2639.
[25] 张瑶芬, 杜玉兰, 刘昆元, 等. 辛烯醛-异辛醇二元体系汽-液平衡研究[J]. 化学工程, 1983(2): 19–24.
Zhang Yaofeng, Du Yulan, Liu Kunyuan, et al. The vapor-liquid equilibrium of octene aldehyde-isooctyl alcohol binary system[J]. Chemical Engineering, 1983(2): 19–24.