[1] WANG Y, LV J, GAO P, et al. Crystal structure prediction via efficient sampling of the potential energy surface[J]. Accounts of Chemical Research, 2022, 55(15):2068-2076
[2] CHENG G, GONG X, YIN W. Crystal structure prediction by combining graph network and optimization algorithm[J]. Nature Communications, 2022, doi:10.1038/s41467-022-29241-4
[3] FRATINI S, CIUCHI S, MAYOU D, et al. A map of high-mobility molecular semiconductors[J]. Nature Materials, 2017, 16(10):998-1002
[4] NEMATIARAM T, PADULA D, TROISI A. Bright Frenkel excitons in molecular crystals:A survey[J]. Chemistry of Materials:A Publication of the American Chemical Society, 2021, 33(9):3368-3378
[5] KUNKEL C, SCHOBER C, MARGRAF J T, et al. Finding the right bricks for molecular legos:A data mining approach to organic semiconductor design[J]. Chemistry of Materials, 2019, 31(3):969-978
[6] OGANOV A R, PICKARD C J, ZHU Q, et al. Structure prediction drives materials discovery[J]. Nature Reviews Materials, 2019, 4(5):331-348
[7] WEI L, FU N, SIRIWARDANE E M D, et al. TCSP:A template-based crystal structure prediction algorithm for materials discovery[J]. Inorganic Chemistry, 2022, 61(22):8431-8439
[8] KUSABA M, LIU C, YOSHIDA R. et al. Crystal structure prediction with machine learning-based element substitution[J]. Computational Materials Science, 2022, doi:10.1016/j.commatsci.2022.111496
[9] WOODLEY S M, DAY G M, CATLOW R. Structure prediction of crystals, surfaces and nanoparticles[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2020, doi:10.1098/rsta.2019.0600
[10] YANG S, DAY G M. Exploration and optimization in crystal structure prediction:Combining Basin hopping with quasi-random sampling[J]. Journal of Chemical Theory and Computation, 2021, 17(3):1988-1999
[11] CRUZ-CABEZA A J, REUTZEL-EDENS S M, BERNSTEIN J. Facts and fictions about polymorphism[J]. Chemical Society Reviews, 2015, 44(23):8619-8635
[12] PULIDO A, CHEN L, KACZOROWSKI T, et al. Functional materials discovery using energy-structure-function maps[J]. Nature, 2017, 543(7647):657-664
[13] AITCHISON C M, KANE C M, MCMAHON D P, et al. Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded framework[J]. Journal of Materials Chemistry A, 2020, 8(15):7158-7170
[14] PRICE S L. Predicting crystal structures of organic compounds[J]. Chemical Society Reviews, 2014, 43(7):2098-2111
[15] ZHU Q, OGANOV A R, SALVADO M A, et al. Denser than diamond:Ab initio search for superdense carbon allotropes[J]. Physical Review B, 2011, doi:10.1103/PhysRevB.83.193410
[16] ZHU Q, HATTORI S. Organic crystal structure prediction and its application to materials design[J]. Journal of Materials Research, 2022:1-18
[17] OGANOV A R. Crystal structure prediction:Reflections on present status and challenges[J]. Faraday Discussions, 2018, 211(0):643-660
[18] DEMIR S, TEKIN A. FFCASP:A massively parallel crystal structure prediction algorithm[J]. Journal of Chemical Theory and Computation, 2021, 17(4):2586-2598
[19] HAUTIER G, FISCHER C, EHRLACHER V, et al. Data mined ionic substitutions for the discovery of new compounds[J]. Inorganic Chemistry, 2011, 50(2):656-663
[20] WANG H, BOTTI S, MARQUES M A L. Predicting stable crystalline compounds using chemical similarity[J]. Npj Computational Materials, 2021, doi:10.1038/s41524-020-00481-6
[21] KIM S, NOH J, GU G, et al. Generative adversarial networks for crystal structure prediction[J]. ACS Central Science, 2020, 6(8):1412-1420
[22] YANG W, DILANGA SIRIWARDANE E M, HU J. Crystal structure prediction using an age-fitness multiobjective genetic algorithm and coordination number constraints[J]. The Journal of Physical Chemistry A, 2022, 126(4):640-647
[23] NOSENGO N, CEDER G. Can artificial intelligence create the next wonder material?[J]. Nature, 2016, 533(7601):22-25
[24] CURTAROLO S, HART G L W, NARDELLI M B, et al. The high-throughput highway to computational materials design[J]. Nature Materials, 2013, 12(3):191-201
[25] ZARKEVICH N A, JOHNSON D D. Reliable first-principles alloy thermodynamics via truncated cluster expansions[J]. Physical Review Letters, 2004, doi:10.1103/PhysRevLett.92.255702
[26] FIZ Karlsruhe-Leibniz Institute for Information Infrastructure. Inorganic crystal structure database[DB/OL]. http://icsd.fiz-karlsruhe.de
[27] The Cambridge Crystallographic Data Centre. Cambridge crystallographic data centre[DB/OL]. https://www.ccdc.cam.ac.uk/
[28] Materials Project. Materials Project[DB/OL]. https://materialsproject.org/
[29] Chris Wolverton's group at Northwestern University. Open Quantum Materials Database[DB]. https://www.oqmd.org/
[30] Springer Materials. The Landolt-Börnstein-Database[DB/OL]. https://materials.springer.com/
[31] HU J, YANG W, DONG R, et al. Contact map based crystal structure prediction using global optimization[J]. CrystEngComm, 2021, 23(8):1765-1776
[32] HONG R, MATTEI A, SHEIKH A Y, et al. A data-driven and topological mapping approach for the a priori prediction of stable molecular crystalline hydrates[J]. PNAS, 2022, doi:10.1073/pnas.2204414119
[33] PICKARD C J, NEEDS R J. Ab initio random structure searching[J]. Journal of Physics:Condensed Matter, 2011, doi:10.1103/PhysRevB.90.035424
[34] DERINGER V L, PICKARD C J, CSÁNYI G. Data-driven learning of total and local energies in elemental boron[J]. Physical Review Letters, 2018, doi:10.1103/PhysRevLett.120.156001
[35] WOODLEY S M, CATLOW R. Crystal structure prediction from first principles[J]. Nature Materials, 2008, 7(12):937-946
[36] Curtin Institute for Computation at Curtin University. GULP[CP]. https://gulp.curtin.edu.au/gulp
[37] MELLOT DRAZNIEKS C, NEWSAM J M, GORMAN A M, et al. De novo prediction of inorganic structures developed through automated assembly of secondary building units (AASBU method)[J]. Angewandte Chemie International Edition, 2000, 39(13):2270-2275
[38] BANERJEE A, JASRASARIA D, NIBLETT S P, et al. Crystal structure prediction for benzene using basin-hopping global optimization[J]. The Journal of Physical Chemistry A, 2021, 125(17):3776-3784
[39] WALES D J, DOYE J P K. Global optimization by basin-hopping and the lowest energy structures of lennard-Jones clusters containing up to 110 atoms[J]. The Journal of Physical Chemistry A, 1997, 101(28):5111-5116
[40] LI Z, SCHERAGA H A. Monte Carlo-minimization approach to the multiple-minima problem in protein folding[J]. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84(19):6611-6615
[41] WALES D J, SCHERAGA H A. Global optimization of clusters, crystals, and biomolecules[J]. Science, 1999, 285(5432):1368-1372
[42] University of Cambridge. GMIN[CP]. http://www-wales.ch.cam.ac.uk/GMIN/
[43] RAITERI P, MARTONÁK R, PARRINELLO M. Exploring polymorphism:The case of benzene[J]. Angewandte Chemie (International Ed in English), 2005, 44(24):3769-3773
[44] PLUMED consortium. PLUMED[CP]. https://www.plumed.org/
[45] WANG Y, LV J, ZHU L et al. CALYPSO:A method for crystal structure prediction[J]. Computer Physics Communications, 2012, 183(10):2063-2070
[46] GLASS C W. USPEX-Evolutionary crystal structure prediction[J]. Computer Physics Communications, 2006, 175(11/12):713-720
[47] GOLDBERG D E, HOLLAND J H. Genetic algorithms and machine learning[J].Machine Learning, 1988, 3(2/3):95-99
[48] STORN R, PRICE K. Differential Evolution-A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization 1997, 11 (4):341-359
[49] HANSEN N. The CMA evolution strategy:A comparing review[M]//Towards a New Evolutionary Computation. Berlin, Heidelberg:Springer Berlin Heidelberg, 2007:75-102
[50] POLI R, KENNEDY J, BLACKWELL T. Particle swarm optimization[J]. Swarm Intelligence, 2007, 1(1):33-57
[51] MOCKUS J. Application of Bayesian approach to numerical methods of global and stochastic optimization[J]. Journal of Global Optimization, 1994, 4(4):347-365
[52] VU K K, D'AMBROSIO C, HAMADI Y, et al. Surrogate-based methods for black-box optimization[J]. International Transactions in Operational Research, 2017, 24(3):393-424
[53] COSTA A, NANNICINI G. RBFOpt:An open-source library for black-box optimization with costly function evaluations[J].Mathematical Programming Computation, 2018, 10(4):597-629
[54] WANG Y, LV J, ZHU L, et al. Materials discovery via CALYPSO methodology[J]. Journal of Physics Condensed Matter:An Institute of Physics Journal, 2015, doi:10.1088/0953-8984/27/20/203203
[55] 高朋越, 吕健, 王彦超, 等. 基于智能全局优化算法的理论结构预测[J]. 物理, 2017, 46(9):582-589 GAO Pengyue, LV Jian, WANG Yanchao, et al. Structure prediction via intelligent global optimization algorithms[J]. Physics, 2017, 46(9):582-589(in Chinese)
[56] LV J, WANG Y, ZHU L, et al. Predicted novel high-pressure phases of lithium[J]. Physical Review Letters, 2011, doi:10.1103/PhysRevLett.106.015503
[57] GUILLAUME C L, GREGORYANZ E, DEGTYAREVA O, et al. Cold melting and solid structures of dense lithium[J]. Nature Physics, 2011, 7(3):211-214
[58] ZHU L, LIU H, PICKARD C J, et al. Reactions of xenon with iron and nickel are predicted in the earth's inner core[J]. Nature Chemistry, 2014, 6(7):644-648
[59] WANG H, WANG, Y, LV J, et al. CALYPSO structure prediction method and its wide application[J]. Computational Materials Science, 2016, 112:406-415
[60] TONG Q, XUE L, LV J, et al. Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface[J]. Faraday Discussions, 2018, 211(0):31-43
[61] 魏晓辉, 周长宝, 沈笑先, 等. 机器学习加速CALYPSO结构预测的可行性[J]. 吉林大学学报(工学版), 2021, 51(2):667-676 WEI Xiaohui, ZHOU Changbao, SHEN Xiaoxian, et al. Accelerating CALYPSO structure prediction with machine learning[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(2):667-676(in Chinese)
[62] LYAKHOV A O, Oganov A R, Stokes H T. New developments in evolutionary structure prediction algorithm USPEX[J]. Computer Physics Communications, 2013, 184(4):1172-1182
[63] ZHANG W, OGANOV A R, GONCHAROV A F, et al. Unexpected stable stoichiometries of sodium chlorides[J]. Science, 2013, 342(6165):1502-1505
[64] ZHOU X, OGANOV A R, QIAN G, et al. First-principles determination of the structure of magnesium borohydride[J]. Physical Review Letters, 2012, doi:10.1103/PhysRevLett.109.245503
[65] 张晓铮. 过渡金属硼化物的物理性能的第一性原理研究[D]. 呼和浩特:内蒙古工业大学, 2015 ZHANG Xiaozheng. First-principle calculations of physical properties of transitional metal borides[D]. Hohhot:Inner Mongolia University of Tehchnology, 2015 (in Chinese)
[66] PICKARD C J, NEEDS R J. Ab initio random structure searching[J]. Journal of Physics Condensed Matter, 2011, doi:10.1088/0953-8984/23/5/053201
[67] PICKARD C J, NEEDS R J. When is H2O not water?[J]. The Journal of Chemical Physics, 2007, doi:10.1063/1.2812268
[68] FENG J, HENNIG R G, ASHCROFT N W, et al. Emergent reduction of electronic state dimensionality in dense ordered Li-Be alloys[J]. Nature, 2008, 451(7177):445-448
[69] ZHU Q, JOHAL J, WIDDOWSON D E, et al. Analogy powered by prediction and structural invariants:Computationally led discovery of a mesoporous hydrogen-bonded organic cage crystal[J]. Journal of the American Chemical Society, 2022, 144(22):9893-9901
[70] BERAN G J O. Modeling polymorphic molecular crystals with electronic structure theory[J]. Chemical Reviews, 2016, 116(9):5567-5613
[71] NIKHAR R, SZALEWICZ K. Reliable crystal structure predictions from first principles[J]. Nature Communications, 2022, doi:10.1038/s41467-022-30692-y
[72] CURTIS F, LI X Y, ROSE T, et al. GAtor:A first-principles genetic algorithm for molecular crystal structure prediction[J]. Journal of Chemical Theory and Computation, 2018, 14(4):2246-2264
[73] CURTIS F, ROSE T, MAROM N. Evolutionary niching in the GAtor genetic algorithm for molecular crystal structure prediction[J]. Faraday Discussions, 2018, 211(0):61-77
[74] BIER I, O'CONNOR D, HSIEH Y T, et al. Crystal structure prediction of energetic materials and a twisted arene with Genarris and GAtor[J]. CrystEngComm, 2021, 23(35):6023-6038
[75] YIN X, GOUNARIS C E. Search methods for inorganic materials crystal structure prediction[J]. Current Opinion in Chemical Engineering, 2022, doi:10.1016/j.coche.2021.100726
[76] BEHLER J, PARRINELLO M. Generalized neural-network representation of high-dimensional potential-energy surfaces[J]. Physical Review Letters, 2007, doi:10.1103/PhysRevLett.98.146401
[77] MEREDIG B, AGRAWAL A, KIRKLIN S, et al. Combinatorial screening for new materials in unconstrained composition space with machine learning[J]. Physical Review B, 2014, doi:10.1103/PhysRevB.89.094104
[78] ISAYEV O, OSES C, TOHER C, et al. Universal fragment descriptors for predicting properties of inorganic crystals[J]. Nature Communications, 2017, doi:10.1038/ncomms15679
[79] XIE T, GROSSMAN J C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties[J]. Physical Review Letters 2018, doi:10.1103/PhysRevLett.120.145301
[80] NOUIRA A, SOKOLOVSKA N, CRIVELLO J C. CrystalGAN:Learning to discover crystallographic structures with generative adversarial networks[EB/OL]. 2018:arXiv:1810.11203. https://arxiv.org/abs/1810.11203
[81] NOH J, KIM J, STEIN, H S, et al. Inverse design of solid-state materials via a continuous representation[J]. Matter, 2019, 1(5):1370-1384
[82] XIOURAS C, CAMELI F, QUILLÓ G L, et al. Applications of artificial intelligence and machine learning algorithms to crystallization[J]. Chemical Reviews, 2022, 122(15):13006-13042
|