[an error occurred while processing this directive]
化学工业与工程
 首页 |  在线投稿 |  期刊介绍 |  编 委 会 |  投稿指南 |  期刊订阅 |  下载中心 |  出版伦理 |  联系我们 |  English
化学工业与工程 2022, Vol. 39 Issue (6) :109-116    DOI: 10.13353/j.issn.1004.9533.20216004
化工模拟与计算 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << | >>
基于ASO-BP神经网络的海底油气管道腐蚀速率预测
肖荣鸽, 王栋, 王勤学
西安石油大学陕西省油气田特种增产技术重点实验室, 西安石油大学石油工程学院, 西安 710065
Prediction of corrosion rate of submarine oil and gas pipelines based on ASO-BP neural network
XIAO Rongge, WANG Dong, WANG Qinxue
Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs, College of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, China

摘要
参考文献
相关文章
Download: PDF (2620KB)   HTML ()   Export: BibTeX or EndNote (RIS)      Supporting Info
文章导读  
摘要 随着我国海洋油气管网的发展与建设,管道数据采集量随之增大,优秀的预测模型可以应对大量数据,准确预测管道腐蚀速率,对保障管道安全健康运行具有重大意义。将原子搜索优化算法(ASO)思想引入BP (Back propagation)神经网络,构建ASO-BP神经网络用于海底油气管道腐蚀速率的预测。以50组现场数据为例,使用Matlab进行模拟仿真计算,分别构建具有代表性的BP、GA-BP和ACO-BP模型作为对比,对海底油气管道腐蚀速率数据进行训练和预测,结果表明ASO-BP模型预测精度较高,其平均绝对百分比误差(MAPE)为3.16%,预测结果优于BP、GA-BP和ACO-BP,验证了其可靠性以及良好的预测性能,为海底管道腐蚀速率预测研究提供了新的方法和思路。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
肖荣鸽
王栋
王勤学
关键词海底油气管道   腐蚀速率   原子搜索优化算法   BP神经网络   预测精度     
Abstract: With the development and construction of offshore oil and gas pipeline network, the amount of pipeline data collection has increased accordingly. Excellent prediction models can cope with a large amount of data and accurately predict the corrosion rate of pipelines, which is of great significance to ensure the safe and healthy operation of pipelines. The idea of atomic search optimization algorithm (ASO) is introduced into BP (Back propagation) neural network, and ASO-BP neural network is constructed to predict the corrosion rate of submarine oil and gas pipelines. Taking 50 sets of field data as an example, Matlab was used for simulation calculations, and representative BP, GA-BP, and ACO-BP models were constructed for comparison. The corrosion rate data of submarine oil and gas pipelines were trained and predicted. The results show that the prediction accuracy of the ASO-BP model is high, the mean absolute percentage error (MAPE) of the model is 3.16%, and the prediction results are better than those of BP, GA-BP and ACO-BP, its reliability and nice prediction performance are verified, which provides a new method and idea for the prediction of submarine pipeline corrosion rate.
Keywordssubmarine oil and gas pipeline   corrosion rate   atomic search optimization algorithm   BP neural network   prediction accuracy     
Received 2021-08-30;
Fund:陕西省教育厅服务地方专项计划项目(19JC034);西安石油大学研究生创新与实践能力培养计划资助(21212090)。
Corresponding Authors: 肖荣鸽,教授,E-mail:xiaorongge@163.com。     Email: xiaorongge@163.com
About author: 肖荣鸽(1978-),女,博士,现从事多相管流及油气田集输技术方面的研究。
引用本文:   
肖荣鸽, 王栋, 王勤学.基于ASO-BP神经网络的海底油气管道腐蚀速率预测[J].  化学工业与工程, 2022,39(6): 109-116
XIAO Rongge, WANG Dong, WANG Qinxue.Prediction of corrosion rate of submarine oil and gas pipelines based on ASO-BP neural network[J].  Chemcial Industry and Engineering, 2022,39(6): 109-116
Copyright 2010 by 化学工业与工程