[1] Soloveichik G L. Flow batteries:Current status and trends[J]. Chemical Reviews, 2015, 115(20):11533-11558
[2] Wang W, Luo Q, Li B, et al. Recent progress in redox flow battery research and development[J]. Advanced Functional Materials, 2013, 23(8):970-986
[3] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid:A battery of choices[J]. Science, 2011, 334(6058):928-935
[4] Zhang H, Li X, Zhang J. Redox flow batteries[M]. USA:CRC Press, 2017
[5] Skyllas-Kazacos M, Chakrabarti M H, Hajimolana S A, et al. Progress in flow battery research and development[J]. Journal of the Electrochemical Society, 2011, doi:10.1149/1.3599565
[6] Duduta M, Ho B, Wood V C, et al. Semi-Solid lithium rechargeable flow battery[J]. Advanced Energy Materials, 2011, 1(4):511-516
[7] 陈永翀, 武明晓, 任雅琨, 等. 锂离子液流电池的研究进展[J]. 电工电能新技术, 2012, 31(3):81-85 Chen Yongchong, Wu Mingxiao, Ren Yakun, et al. Research progress in lithium-ion flow battery[J]. Advanced Technology of Electrical Engineering and Energy, 2012, 31(3):81-85(in Chinese)
[8] Wang Q, Zakeeruddin S M, Wang D, et al. Redox targeting of insulating electrode materials:A new approach to high-energy-density batteries[J]. Angewandte Chemie International Edition, 2006, 45(48):8197-8200
[9] Wang Q, Evans N, Zakeeruddin S M, et al. High energy lithium batteries by molecular wiring and targeting approaches[J]. Journal of Power Sources, 2007, 174(2):408-413
[10] Wang D, Ela S E, Zakeeruddin S M, et al. Polymer wiring of insulating electrode materials:An approach to improve energy density of lithium-ion batteries[J]. Electrochemistry Communications, 2009, 11(7):1350-1352
[11] Huang Q, Li H, Grätzel M, et al. Reversible chemical delithiation/lithiation of LiFePO4:Towards a redox flow lithium-ion battery[J]. Phys Chem Chem Phys, 2013, 15(6):1793-1797
[12] Hu B, DeBruler C, Rhodes Z, et al. Long-Cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage[J]. Journal of the American Chemical Society, 2017, 139(3):1207-1214
[13] Jia C, Pan F, Zhu Y, et al. High-Energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane[J]. Science Advances, 2015, doi:10.1126/sciadv.1500886
[14] Huang Q, Yang J, Ng C B, et al. A redox flow lithium battery based on the redox targeting reactions between LiFePO4and iodide[J]. Energy & Environmental Science, 2016, 9(3):917-921
[15] Yu J, Fan L, Yan R, et al. Redox targeting-based aqueous redox flow lithium battery[J]. ACS Energy Letters, 2018, 3(10):2314-2320
[16] Zhou M, Huang Q, Pham T T N, et al. Nernstian-Potential-Driven redox-targeting reactions of battery materials[J]. Chem, 2017, 3(6):1036-1049
[17] Zhu Y, Du Y, Jia C, et al. Unleashing the power and energy of LiFePO4-based redox flow lithium battery with a bifunctional redox mediator[J]. Journal of the American Chemical Society, 2017, 139(18):6286-6289
[18] Wedege K, Azevedo J, Khataee A, et al. Direct solar charging of an organic-inorganic, stable, and aqueous alkaline redox flow battery with a hematite photoanode[J]. Angewandte Chemie International Edition, 2016, 55(25):7142-7147
[19] Liao S, Zong X, Seger B, et al. Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging[J]. Nature Communications, 2016, doi:10.1038/ncomms11474
[20] Yu Z, Gorlov M, Nissfolk J, et al. Investigation of iodine concentration effects in electrolytes for dye-sensitized solar cells[J]. The Journal of Physical Chemistry C, 2010, 114(23):10612-10620
[21] Fan L, Jia C, Zhu Y, et al. Redox targeting of Prussian blue:Toward low-cost and high energy density redox flow battery and solar rechargeable battery[J]. ACS Energy Letters, 2017, 2(3):615-621
[22] Li J, Yang L, Yang S, et al. The application of redox targeting principles to the design of rechargeable Li-S flow batteries[J]. Advanced Energy Materials, 2015, doi:10.1002/aenm.201501808
[23] Li J, Yang L, Yuan B, et al. Combined mediator and electrochemical charging and discharging of redox targeting lithium-sulfur flow batteries[J]. Materials Today Energy, 2017, 5:15-21
[24] Zanzola E, Dennison C R, Battistel A, et al. Redox solid energy boosters for flow batteries:Polyaniline as a case study[J]. Electrochimica Acta, 2017, 235:664-671
[25] Maurya S, Shin S H, Kim Y, et al. A review on recent developments of anion exchange membranes for fuel cells and redox flow batteries[J]. RSC Advances, 2015, 5(47):37206-37230
[26] Yuan Z, Zhu X, Li M, et al. A highly ion-selective zeolite flake layer on porous membranes for flow battery applications[J]. Angewandte Chemie International Edition, 2016, 55(9):3058-3062
[27] Milton M, Cheng Q, Yang Y, et al. Molecular materials for nonaqueous flow batteries with a high coulombic efficiency and stable cycling[J]. Nano Letters, 2017, 17(12):7859-7863
[28] Nemec D, Levec J. Flow through packed bed reactors:1. Single-Phase flow[J]. Chemical Engineering Science, 2005, 60(24):6947-6957
[29] Allen K G, von Backström T W, Kröger D G. Packed bed pressure drop dependence on particle shape, size distribution, packing arrangement and roughness[J]. Powder Technology, 2013, 246:590-600
[30] Rausch B, Symes M D, Chisholm G, et al. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting[J]. Science, 2014, 345(6202):1326-1330
[31] Amstutz V, Toghill K E, Powlesland F, et al. Renewable hydrogen generation from a dual-circuit redox flow battery[J]. Energy Environ Sci, 2014, 7(7):2350-2358
|