[1] 王静康. 化工过程设计:化工设计[M]. 第2版. 北京:化学工业出版社, 2010 Wang Jingkang. Handbook of chemical engineering:Crystallization[M]. 2rd edition. Beijing:Chemical Industry Press, 1996(in Chinese)
[2] 戚力, 董立峰, 程华, 等. 高压条件下Pd-Ni合金熔体非晶形成过程及微观结构演化的分子动力学研究[J]. 金属学报, 2008, 44(2):233-236 Qi Li, Dong Lifeng, Cheng Hua, et al. Molecular dynamics simulations of glass formation and local structure evolution in rapidly cooled Pd-Ni alloy melts under high pressure[J]. Acta Metallurgica Sinica, 2008, 44(2):233-236(in Chinese)
[3] 钱逸泰. 结晶化学导论[M]. 合肥:中国科学技术大学出版社, 2005 Qian Yitai. Introduction to crystallization chemistry[M]. Hefei:University of Science and Technology of China Press, 2005(in Chinese)
[4] 王静康, 黄向荣, 刘秉文, 等. 有机分子晶体晶习预测的研究进展[J]. 人工晶体学报, 2002, 31(3):218-223 Wang Jingkang, Huang Xiangrong, Liu Bingwen, et al. Research progress in predicting the habit of organic molecular crystals[J]. Journal of Synthetic Crystals, 2002, 31(3):218-223(in Chinese)
[5] 张缨, 王静康, 冯天扬, 等. 晶体形貌预测方法与应用[J]. 化学工业与工程, 2002, 19(1):119-123 Zhang Ying, Wang Jingkang, Feng Tianyang, et al. Prediction and application of the crystal morphology[J]. Chemical Industry and Engineering, 2002, 19(1):119-123(in Chinese)
[6] 冯端, 王业. 金属物理-上册[M]. 北京:科学出版社, 1964
[7] Berg W F. Crystal growth from solutions[J]. Proceedings of the Royal Society of London Series a-Mathematical and physical sciences, 1938, 164(916):79-95
[8] Liu J, Rasmuson A C. Influence of agitation and fluid shear on primary nucleation in solution[J]. Crystal Growth & Design, 2013, 13(10):4385-4394
[9] Wisnet A, Betzler S B, Zucker R V, et al. Model for hydrothermal growth of rutile wires and the associated development of defect structures[J]. Crystal Growth & Design, 2014, 14(9):4658-4663
[10] Bourdet J, Burruss R C, Chou I M, et al. Evidence for a palaeo-oil column and alteration of residual oil in a gas-condensate field:Integrated oil inclusion and experimental results[J]. Geochimica Et Cosmochimica Acta, 2014, 142:362-385
[11] Huang J, Yin Q, Ulrich J. The effect of dissolved gases as impurities on crystallization[J]. Chemical Engineering & Technology, 2016, 39(7):1213-1218
[12] Conesa-Boj S, Zardo I, Estradeé S, et al. Defect formation in ga-catalyzed silicon nanowires[J]. Crystal Growth & Design, 2010, 10(4):1534-1543
[13] Frezzotti M L, Tecce F, Casagli A. Raman spectroscopy for fluid inclusion analysis[J]. Journal of Geochemical Exploration, 2012, 112:1-20
[14] Péter A, Polgár K, Beregi E. Revealing growth defects in non-linear borate single crystals by chemical etching[J]. Journal of Crystal Growth, 2000, 209(1):102-109
[15] Durbin D, Carlson E, Saros T. In situ studies of protein crystal growth by atomic force microscopy[J]. Journal of Physics D:Applied Physics, 1993, 26(8B):B128-B132
[16] Zhang S, Zhang J, Cheng Z, et al. Studies on the growth and defects of GdCa4O(BO3)3 crystals[J]. Journal of Crystal Growth, 1999, 203(1/2):168-172
[17] Zhang G, Grant D J W. Formation of liquid inclusions in adipic acid crystals during recrystallization from aqueous solutions[J]. Crystal Growth & Design, 2005, 5(1):319-324
[18] Couvrat N, Blier A S, Berton B, et al. Characterization of defects inside single crystals of ciclopirox[J]. Crystal Growth & Design, 2009, 9(6):2719-2724
[19] Kim J W, Kim J K, Kim H S, et al. Characterization of liquid inclusion of RDX crystals with a cooling crystallization[J]. Crystal Growth & Design, 2009, 9(6):2700-2706
[20] Waldschmidt A, Rietveld I, Couvrat N, et al. About aged heterogeneous liquid inclusions inside organic crystals in relation to crystal formation, structure, and morphology[J]. Crystal Growth & Design, 2011, 11(6):2580-2587
[21] Waldschmidt A, Couvrat N, Berton B, et al. Impact of gas composition in the mother liquor on the formation of macroscopic inclusions and crystal growth rates. case study with ciclopirox crystals[J]. Crystal Growth & Design, 2011, 11(6):2463-2470
[22] Waldschmidt A, Dupray V, Berton B, et al. Incidence of crystal growth conditions on the formation of macroscopic liquid inclusions in ciclopirox crystals[J]. Journal of Crystal Growth, 2012, 342(1):72-79
[23] Bobo E, Lefez B, Caumon M C, et al. Evidence of two types of fluid inclusions in single crystals[J]. Cryst Eng Comm, 2016, 18(28):5287-5295
[24] 周恒为, 王丽娜, 郭秀珍, 等. 邻苯二甲酸二甲酯晶体中裂纹愈合效应的力学谱研究[J]. 物理学报, 2010, 59(3):2120-2125 Zhou Hengwei, Wang Lina, Guo Xiuzhen, et al. Study of crack healing effect in dimethyl phthalate crystals by mechanical spectroscopy[J]. Acta Physica Sinica, 2010, 59(3):2120-2125(in Chinese)
[25] Liu X, Wang Z, Zhang G, et al. Crystal growth of high quality nonlinear optical crystals of L-arginine trifluoroacetate[J]. Journal of Crystal Growth, 2007, 308(1):130-132
[26] Liu X, Wang Z, Xu D, et al. Investigation on the micro-crystallization of L-arginine trifluoroacetate (LATF) crystals[J]. Journal of Alloys and Compounds, 2007, 441(1/2):323-326
[27] Liu X, Xu D, Ren M, et al. An examination of the growth kinetics of L-arginine trifluoroacetate (LATF) crystals from induction period and atomic force microscopy investigations[J]. Crystal Growth & Design, 2010, 10(8):3442-3447
[28] Geng Y, Xu D, Sun D, et al. Atomic force microscopy studies on growth mechanisms of LAP crystals grown in solution containing excessive amount of L-arginine[J]. Materials Chemistry and Physics, 2005, 90(1):53-56
[29] Yan S, Xie C, Zhang X, et al. Influence of crystal growth conditions on formation of macroscopic inclusions inside thiourea crystals[J]. Chemistry Select, 2018, 3(8):2293-2297
[30] 范继辉. 稀土Sm掺杂八羟基喹啉铜薄膜的特性研究[D]. 济南:山东大学, 2015 Fan Jihui. The characteristics of rare earth Sm-doped bis(8-hydroxyquinoline) copper films[D]. Jinan:Shandong University, 2015(in Chinese)
[31] 花成, 黄明, 黄辉, 等. RDX/HMX炸药晶体内部缺陷表征与冲击波感度研究[J]. 含能材料, 2010, 18(2):152-156 Hua Cheng, Huang Ming, Huang Hui, et al. Intragranular defects and shock sensitivity of RDX/HMX[J]. Chinese Journal of Energetic Materials, 2010, 18(2):152-156(in Chinese)
[32] Caulder S M, Miller P J, Gibson K D, et al. Effect of particle size and crystal quality on the critical shock initiation pressure of RDX/HTPB formulations[C]//13th International Detonation Symposium VA:Norfolk. 2006:23-28
[33] 李洪珍, 徐容, 黄明, 等. 降感CL-20的制备及性能研究[J]. 含能材料, 2009, 17(1):125-125 Li Hongzhen, Xu Rong, Huang Ming, et al. Preparation and properties of degradation CL-20[J]. Chinese Journal of Energetic Materials, 2009, 17(1):125-125(in Chinese)
[34] Urbelis J H, Swift J A. Solvent effects on the growth morphology and phase purity of CL-20[J]. Crystal Growth & Design, 2014, 14(4):1642-1649
[35] Cao X, Duan X, Pei C. Study on crystallization kinetics and the crystal internal defects of HMX[J]. Crystal Research and Technology, 2013, 48(1):29-37
[36] Hua C, Zhang P, Lu X, et al. Research on the size of defects inside RDX/HMX crystal and shock sensitivity[J]. Propellants, Explosives, Pyrotechnics, 2013, 38(6):775-780
[37] Li W, Liao N, Duan X, et al. Investigation of nucleation kinetics and crystal defects of HMX[J]. Crystal Research and Technology, 2015, 50(7):505-515
[38] 王清月, 胡明列, 柴路. 光子晶体光纤非线性光学研究新进展[J]. 中国激光, 2006, 33(1):57-66 Wang Qingyue, Hu Minglie, Chai Lu. Progress in nonlinear optics with photonic crystal fibers[J]. Chinese Journal of Lasers, 2006, 33(1):57-66(in Chinese)
[39] Dmitriev V G, Gurzadyan G G, Nikogosyan D N. Handbook of nonlinear optical crystals[M]. Berlin, Heidelberg:Springer Berlin Heidelberg, 1991
[40] Wong M S, Bosshard C, Pan F, et al. Non-Classical donor-acceptor chromophores for second order nonlinear optics[J]. Advanced Materials, 1996, 8(8):677-680
[41] Yang Z, Jazbinsek M, Ruiz B, et al. Molecular engineering of stilbazolium derivatives for second-order nonlinear optics[J]. Chemistry of Materials, 2007, 19(14):3512-3518
[42] 牛睿祺, 董慧茹, 王云平. 非线性光学晶体4-(4-二甲基氨基苯乙烯基)甲基吡啶对甲基苯磺酸盐的制备与性能研究[J]. 物理学报, 2007, 56(7):4235-4241 Niu Ruiqi, Dong Huiru, Wang Yunping. Preparation and properties of the organic nonlinear optical crystal trans-4-[4-(dimethylamino)styryl]-1-methylpyridium p-toluenesulfonate[J]. Acta Physica Sinica, 2007, 56(7):4235-4241(in Chinese)
[43] Chen F. Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications[J]. Laser & Photonics Reviews, 2012, 6(5):622-640
[44] Kang S, Jeon Y M, Kim K, et al. The diazonium group:An electron acceptor for large molecular hyperpolarizabilities[J]. Journal of the Chemical Society, Chemical Communications, 1995(6):635-636
[45] Duan X, Okada S, Oikawa H, et al. Second-Order hyperpolarizabilities of organic ionic species[J]. Molecular Crystals and Liquid Crystals Science and Technology Section A Molecular Crystals and Liquid Crystals, 1995, 267(1):89-94
[46] Verbiest T, Houbrechts S, Kauranen M, et al. Second-Order nonlinear optical materials:Recent advances in chromophore design[J]. Journal of Materials Chemistry, 1997, 7(11):2175-2189
[47] Ruiz B, Yang Z, Gramlich V, et al. Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity[J]. J Mater Chem, 2006, 16(27):2839-2842
[48] Yang Z, Jazbinsek M, Ruiz B, et al. Molecular engineering of stilbazolium derivatives for second-order nonlinear optics[J]. Chemistry of Materials, 2007, 19(14):3512-3518
[49] Yang Z, Mutter L, Stillhart M, et al. Large-Size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation[J]. Advanced Functional Materials, 2007, 17(13):2018-2023
[50] Tsuji K, Nishimura N, Duan X, et al. Synthesis and properties of novel stilbazolium analogues as second-order nonlinear optical chromophores[J]. Bulletin of the Chemical Society of Japan, 2005, 78(1):180-186
[51] Anwar, Okada S, Oikawa H, et al. Preparation and crystal structures of new colorless 4-amino-1-methylpyridinium benzenesulfonate salts for second-order nonlinear optics[J]. Chemistry of Materials, 2000, 12(4):1162-1170
[52] Figi H, Mutter L, Hunziker C, et al. Extremely large nonresonant second-order nonlinear optical response in crystals of the stilbazolium salt DAPSH[J]. Journal of the Optical Society of America B, 2008, 25(11):1786-1793
[53] 赵庆兰, 黄依森, 曾金波, 等. 有机分光晶体季戌四醇的缺陷研究及其与结构间关系[J]. 人工晶体学报, 1997, 26(Z1):379-379 Zhao Qinglan, Huang Yisen, Zeng Jinbo, et al. Study of defects and structure in organic analysis crystals of pentaerythritoi(PET)[J]. Journal of Synthetic Crystals, 1997, 26(Z1):379-379(in Chinese)
[54] 江昌明, 胡永红, 徐玲玲, 等. 有机非线性光学材料:L-苹果酸脲的晶体生长研究[J]. 化工时刊, 2005, 19(2):19-22 Jiang Changming, Hu Yonghong, Xu Lingling, et al. Study on crystals growth of an organic nonlinear optical material, urea L-malic acid[J]. Chemical Industry Times, 2005, 19(2):19-22(in Chinese)
[55] 刘美, 闫伟伟, 臧娜, 等. 新型吡啶基修饰的尾式卟啉的合成及性质[J]. 高等学校化学学报, 2009, 30(8):1501-1508 Liu Mei, Yan Weiwei, Zang Na, et al. Synthesis and properties of novel porphyrin modified by pyridine derivative[J]. Chemical Journal of Chinese Universities, 2009, 30(8):1501-1508(in Chinese)
[56] Kwon O P, Kwon S J, Jazbinsek M, et al. Organic phenolic configurationally locked polyene single crystals for electro-optic and terahertz wave applications[J]. Advanced Functional Materials, 2008, 18(20):3242-3250
[57] Perry W S, Pope S J A, Allain C, et al. Synthesis and photophysical properties of kinetically stable complexes containing a lanthanide ion and a transition metal antenna group[J]. Dalton Transactions, 2010, 39(45):10974-10983
[58] Sardar D, Datta P, Mitra P, et al. Rhodium(III) and iridium(III) complexes of thioarylazoimidazoles:Synthesis, structure, spectral characterization, electrochemistry and DFT calculation[J]. Polyhedron, 2010, 29(17):3170-3177
[59] Lai S, Liu Y, Zhang D, et al. Efficient singlet oxygen generation by luminescent 2-(2'-Thienyl)Pyridyl cyclometalated platinum(II) complexes and their calixarene derivatives[J]. Photochemistry and Photobiology, 2010, 86(6):1414-1420
[60] Sowade R, Breunig I, Tulea C, et al. Nonlinear coefficient and temperature dependence of the refractive index of lithium niobate crystals in the terahertz regime[J]. Applied Physics B, 2010, 99(1/2):63-66
[61] 刘雪松, 刘希涛, 王新强. 一种全新的金属有机配合物非线性光学晶体CdHg(SCN)4(C2H5NO)2的生长、物化和光学性能表征[J]. 功能材料, 2014, 45(12):12055-12059 Liu Xuesong, Liu Xitao, Wang Xinqiang. Growth, physicochemical and optical characterization of a novel organometallic nonlinear optical crystal:CdHg(SCN)4(C2H5NO)2[J]. Journal of Functional Materials, 2014, 45(12):12055-12059(in Chinese)
[62] Ushasree P M, Jayavel R, Subramanian C, et al. Growth of zinc thiourea sulfate (ZTS) single crystals[J]. Journal of Crystal Growth, 1999, 197(1/2):216-220
[63] Marcy H O, Warren L F, Webb M S, et al. Second-Harmonic generation in zinc tris(thiourea) sulfate[J]. Applied Optics, 1992, 31(24):5051-5060
[64] Meenakshisundaram S, Parthiban S, Sarathi N, et al. Effect of organic dopants on ZTS single crystals[J]. Journal of Crystal Growth, 2006, 293(2):376-381
[65] Krishnan C, Selvarajan P, Freeda T H, et al. Growth and characterization of pure and potassium iodide-doped zinc tris-thiourea sulphate (ZTS) single crystals[J]. Physica B:Condensed Matter, 2009, 404(2):289-294
[66] Selvapandiyan M, Sudhakar S, Sundaramoorthi P. Crystal growth, structural, spectral and mechanical studies of pure and KI doped ZTS single crystals[J]. Journal of Alloys and Compounds, 2012, 523:25-29
[67] Krishnan C, Selvarajan P, Pari S. Synthesis, growth and studies of undoped and sodium chloride-doped zinc tris-thiourea sulphate (ZTS) single crystals[J]. Current Applied Physics, 2010, 10(2):664-669
[68] 周炳琨. 我国光电子技术发展十年回顾[J]. 科学中国人, 1996, (2):6-8 Zhou Bingkun. Ten years review of China's optoelectronic technology development[J]. Scientific Chinese, 1996, (2):6-8(in Chinese)
[69] de Boer R W I, Gershenson M E, Morpurgo A F, et al. Organic single-crystal field-effect transistors[J]. Physica Status Solidi (a), 2004, 201(6):1302-1331
[70] Podzorov V. Organic single crystals:Addressing the fundamentals of organic electronics[J]. MRS Bulletin, 2013, 38(1):15-24
[71] Li R, Hu W, Liu Y, et al. Micro-and nanocrystals of organic semiconductors[J]. Accounts of Chemical Research, 2010, 43(4):529-540
[72] Brock E G, Csavinszky P, Hormats E, et al. Coherent stimulated emission from organic molecular crystals[J]. The Journal of Chemical Physics, 1961, 35(2):759-760
[73] Lee S S, Kim C S, Gomez E D, et al. Controlling nucleation and crystallization in solution-processed organic semiconductors for thin-film transistors[J]. Advanced Materials, 2009, 21(35):3605-3609
[74] Bisri S Z, Takahashi T, Takenobu T, et al. Ambipolar field-effect transistor of high photoluminescent material tetraphenylpyrene (TPPy) single crystal[J]. Japanese Journal of Applied Physics, 2007, 46(24):L596-L598
[75] Minder N A, Ono S, Chen Z, et al. Band-Like electron transport in organic transistors and implication of the molecular structure for performance optimization[J]. Advanced Materials, 2012, 24(4):503-508
[76] Molinari A S, Alves H, Chen Z, et al. High electron mobility in vacuum and ambient for PDIF-CN2 single-crystal transistors[J]. Journal of the American Chemical Society, 2009, 131(7):2462-2463
[77] Islam M M, Pola S, Tao Y. High mobility n-channel single-crystal field-effect transistors based on 5, 7, 12, 14-tetrachloro-6, 13-diazapentacene[J]. Chemical Communications, 2011, 47(22):6356-6358
[78] Nakanotani H, Saito M, Nakamura H, et al. Tuning of threshold voltage by interfacial carrier doping in organic single crystal ambipolar light-emitting transistors and their bright electroluminescence[J]. Applied Physics Letters, 2009, doi:10.1063/1.3216047
|