[1] Wang J, Zhang X, Wei Q, et al. 3D self-supported nanopine forest-like Co3O4@CoMoO4 core-shell architectures for high-energy solid state supercapacitors[J]. Nano Energy, 2016, 19:222-233
[2] Jia Y, Ma Y, Lin Y, et al. In-situ growth of hierarchical NiCo2S4/MoS2 nanotube arrays with excellent electrochemical performance[J]. Electrochimica Acta, 2018, 289:39-46
[3] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411):294-303
[4] Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1):19-29
[5] Cook T R, Dogutan D K, Reece S Y, et al. Solar energy supply and storage for the legacy and nonlegacy worlds[J]. Chemical Reviews, 2010, 110(11):6474-6502
[6] Yang Z, Zhang J, Kintner-Meyer M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5):3577-3613
[7] Miller J R, Simon P. Materials science:Electrochemical capacitors for energy management[J]. Science, 2008, 321(5889):651-652
[8] Wang T, Zhao B, Jiang H, et al. Electro-Deposition of CoNi2S4 flower-like nanosheets on 3D hierarchically porous nickel skeletons with high electrochemical capacitive performance[J]. Journal of Materials Chemistry A, 2015, 3(45):23035-23041
[9] Wang H, Dai H. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage[J]. Chemical Society Reviews, 2013, doi:10.1039/c2cs35307e
[10] Zheng S, Wu Z, Wang S, et al. Graphene-Based materials for high-voltage and high-energy asymmetric supercapacitors[J]. Energy Storage Materials, 2017, 6:70-97
[11] Kulkarni P, Nataraj S K, Balakrishna R G, et al. Nanostructured binary and ternary metal sulfides:Synthesis methods and their application in energy conversion and storage devices[J]. J Mater Chem A, 2017, 5(42):22040-22094
[12] Huang Y, Zeng Y, Yu M, et al. Recent smart methods for achieving high-energy asymmetric supercapacitors[J]. Small Methods, 2018, doi:10.1002/smtd. 201700230
[13] Sun J, Huang Y, Sze S Y N, et al. Recent progress of fiber-shaped asymmetric supercapacitors[J]. Materials Today Energy, 2017, 5:1-14
[14] Shao Y, El-Kady M F, Sun J, et al. Design and mechanisms of asymmetric supercapacitors[J]. Chemical Reviews, 2018, 118(18):9233-9280
[15] Kim C, Ngoc B T N, Yang K S, et al. Self-Sustained thin webs consisting of porous carbon nanofibers for supercapacitors via the electrospinning of polyacrylonitrile solutions containing zinc chloride[J]. Advanced Materials, 2007, 19(17):2341-2346
[16] Wu Z, Wang D, Ren W, et al. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors[J]. Advanced Functional Materials, 2010, 20(20):3595-3602
[17] Burke A. Ultracapacitors:Why, how, and where is the technology[J]. Journal of Power Sources, 2000, 91(1):37-50
[18] Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin?[J]. Science, 2014, 343(6176):1210-1211
[19] 李雪芹, 常琳, 赵慎龙, 等. 基于碳材料的超级电容器电极材料的研究[J]. 物理化学学报, 2017, 33(1):130-148 Li Xueqin, Chang Lin, Zhao Shenlong,et al. Research on carbon-based electrode materials for supercapacitors[J]. Acta Physico-Chimica Sinica, 2017, 33(1):130-148(in Chinese)
[20] Zhang L, Shi D, Liu T, et al. Nickel-Based materials for supercapacitors[J]. Materials Today, 2019, 25:35-65
[21] Zhang L, Zhao X. Carbon-Based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, doi:10.1039/b813846j
[22] Kötz R, Carlen M. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta, 2000, 45(15/16):2483-2498
[23] Tian Q, Wang X, Xu X, et al. A novel porous carbon material made from wild rice stem and its application in supercapacitors[J]. Materials Chemistry and Physics, 2018, 213:267-276
[24] Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors?[J]. Chemical Reviews, 2004, 104(10):4245-4270
[25] Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 2014, doi:10.1039/C3EE44164D
[26] Rauda I E, Augustyn V, Dunn B, et al. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials[J]. Accounts of Chemical Research, 2013, 46(5):1113-1124
[27] Sudha V, Sangaranarayanan M V. Underpotential deposition of metals:Structural and thermodynamic considerations[J]. The Journal of Physical Chemistry B, 2002, 106(10):2699-2707
[28] Herrero E, Buller L J, Abruña H D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials[J]. Chemical Reviews, 2001, 101(7):1897-1930
[29] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11):845-854
[30] Makino S, Ban T, Sugimoto W. Towards implantable bio-supercapacitors:Pseudocapacitance of ruthenium oxide nanoparticles and nanosheets in acids, buffered solutions, and bioelectrolytes[J]. Journal of the Electrochemical Society, 2015, 162(5):A5001-A5006
[31] Lang X, Hirata A, Fujita T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors[J]. Nature Nanotechnology, 2011, 6(4):232-236
[32] Mastragostino M, Arbizzani C, Soavi F. Polymer-based supercapacitors[J]. Journal of Power Sources, 2001, 97/98:812-815
[33] Peng C, Hu D, Chen G. Theoretical specific capacitance based on charge storage mechanisms of conducting polymers:Comment on ‘Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties’[J]. Chemical Communications, 2011, doi:10.1039/c1cc10675a
[34] Kong L, Zhang C, Wang J, et al. Free-Standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-ion intercalation pseudocapacitor[J]. ACS Nano, 2015, 9(11):11200-11208
[35] Come J, Augustyn V, Kim J W, et al. Electrochemical kinetics of nanostructured NB2O5 electrodes[J]. Journal of Electrochemical Society, 2014, 161(5):A718-A725
[36] Zheng S, Wu Z, Wang S, et al. Graphene-Based materials for high-voltage and high-energy asymmetric supercapacitors[J]. Energy Storage Materials, 2017, 6:70-97
[37] Yang Z, Tian J, Yin Z, et al. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor:A review[J]. Carbon, 2019, 141:467-480
[38] Wang K, Zhao N, Lei S, et al. Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors[J]. Electrochimica Acta, 2015, 166:1-11
[39] Chmiola J. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313(5794):1760-1763
[40] Morin S A, Bierman M J, Tong J, et al. Mechanism and kinetics of spontaneous nanotube growth driven by screw dislocations[J]. Science, 2010, 328(5977):476-480
[41] Qiu K, Lu Y, Zhang D, et al. Mesoporous, hierarchical core/shell structured ZnCo2O4/MnO2 nanocone forests for high-performance supercapacitors[J]. Nano Energy, 2015, 11:687-696
[42] Hao C, Wen F, Xiang J, et al. Controlled incorporation of Ni(OH)2 nanoplates into flowerlike MoS2nanosheets for flexible all-solid-state supercapacitors[J]. Advanced Functional Materials, 2014, 24(42):6700-6707
[43] Zhang G, Xiao X, Li B, et al. Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(18):8155-8186
[44] Du W, Bai Y, Xu J, et al. Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors[J]. Journal of Power Sources, 2018, 402:281-295
[45] Morozan A, Jaouen F. Metal organic frameworks for electrochemical applications[J]. Energy & Environmental Science, 2012, doi:10.1039/c2ee22989g
[46] Meng Q, Cai K, Chen Y, et al. Research progress on conducting polymer based supercapacitor electrode materials[J]. Nano Energy, 2017, 36:268-285
[47] Shi Y, Peng L, Ding Y, et al. Nanostructured conductive polymers for advanced energy storage[J]. Chemical Society Reviews, 2015, 44(19):6684-6696
[48] Dubal D P, Gomez-Romero P, Sankapal B R, et al. Nickel cobaltite as an emerging material for supercapacitors:An overview[J]. Nano Energy, 2015, 11:377-399
[49] Gao M, Xu Y, Jiang J, et al. Nanostructured metal chalcogenides:Synthesis, modification, and applications in energy conversion and storage devices[J]. Chemical Society Reviews, 2013, doi:10.1039/c2cs35310e
[50] Lai C, Lu M, Chen L. Metal sulfide nanostructures:Synthesis, properties and applications in energy conversion and storage[J]. J Mater Chem, 2012, 22(1):19-30
[51] Gao Y, Huang K. NiCo2S4 Materials for supercapacitor applications[J]. Chemistry-An Asian Journal, 2017, 12(16):1969-1984
[52] Zhang X, Zhang H, Lin Z, et al. Recent advances and challenges of stretchable supercapacitors based on carbon materials[J]. Science China Materials, 2016, 59(6):475-494
[53] Pumera M. Graphene-Based nanomaterials and their electrochemistry[J]. Chemical Society Reviews, 2010, doi:10.1039/c002690p
[54] Karthikeyan K, Amaresh S, Lee S N, et al. Construction of high-energy-density supercapacitors from pine-cone-derived high-surface-area carbons[J]. ChemSusChem, 2014, 7(5):1435-1442
[55] Sun M, Huang S, Chen L, et al. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine[J]. Chemical Society Reviews, 2016, 45(12):3479-3563
[56] Yan X, Tai Z, Chen J, et al. Fabrication of carbon nanofiber-polyaniline composite flexible paper for supercapacitor[J]. Nanoscale, 2011, 3(1):212-216
[57] Largeot C, Portet C, Chmiola J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. Journal of the American Chemical Society, 2008, 130(9):2730-2731
[58] Yuan C, Gao B, Shen L, et al. Hierarchically structured carbon-based composites:Design, synthesis and their application in electrochemical capacitors[J]. Nanoscale, 2011, 3(2):529-545
[59] 李丹, 刘玉荣, 林保平, 等. 超级电容器用石墨烯/金属氧化物复合材料[J]. 化学进展, 2015, 27(4):404-415 Li Dan, Liu Yurong, Lin Baoping,et al. Graphene/metal oxide composites as electrode material for supercapacitors[J]. Progress in Chemistry, 2015, 27(4):404-415(in Chinese)
[60] He X, Li X, Ma H, et al. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. Journal of Power Sources, 2017, 340:183-191
[61] Lu W, Liu M, Miao L, et al. Nitrogen-Containing ultramicroporous carbon nanospheres for high performance supercapacitor electrodes[J]. Electrochimica Acta, 2016, 205:132-141
[62] Zheng S, Li X, Yan B, et al. Transition-Metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage[J]. Advanced Energy Materials, 2017, doi:doi.org/10.1002/aenm.201602733
[63] Sheberla D, Bachman J C, Elias J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance[J]. Nature Materials, 2017, 16(2):220-224
[64] Salunkhe R R, Kamachi Y, Torad N L, et al. Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons[J]. J Mater Chem A, 2014, 2(46):19848-19854
[65] Guo D, Qian J, Xin R, et al. Facile synthesis of nitrogen-enriched nanoporous carbon materials for high performance supercapacitors[J]. Journal of Colloid and Interface Science, 2019, 538:199-208
[66] Zhao D, Liu H, Wu X. Bi-Interface induced multi-active MCo2O4@MCo2S4@PPy (M=Ni, Zn) sandwich structure for energy storage and electrocatalysis[J]. Nano Energy, 2019, 57:363-370
[67] Usman M, Pan L, Asif M, et al. Nickel foam-graphene/MnO2/PANI nanocomposite based electrode material for efficient supercapacitors[J]. Journal of Materials Research, 2015, 30(21):3192-3200
[68] Yang G, Shi Y, Kang M, et al. Preparation, characterizations and electrochemical performance of polythiophene/nano MnO2 composite[J]. Acta Materiae Compositae Sinica, 2014, 31(3):628-634
[69] Lei C, Wilson P, Lekakou C. Effect of poly(3, 4-ethylenedioxythiophene) (PEDOT) in carbon-based composite electrodes for electrochemical supercapacitors[J]. Journal of Power Sources, 2011, 196(18):7823-7827
[70] Wang K, Wu H, Meng Y, et al. Conducting polymer nanowire arrays for high performance supercapacitors[J]. Small, 2014, 10(1):14-31
[71] 冯鑫. 导电聚合物超级电容器电极材料研究进展[J]. 化工技术与开发, 2016, 45(5):47-49, 64 Feng Xin. Review of conductive polymer supercapacitor electrode materials[J]. Technology & Development of Chemical Industry, 2016, 45(5):47-49, 64(in Chinese)
[72] Wang Y, Li H, Xia Y. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance[J]. Advanced Materials, 2006, 18(19):2619-2623
[73] Yuan C, Gao B, Shen L, et al. Hierarchically structured carbon-based composites:Design, synthesis and their application in electrochemical capacitors[J]. Nanoscale, 2011, 3(2):529-545
[74] Kong D, Ren W, Cheng C, et al. Three-Dimensional NiCo2O4@Polypyrrole coaxial nanowire arrays on carbon textiles for high-performance flexible asymmetric solid-state supercapacitor[J]. ACS Applied Materials & Interfaces, 2015, 7(38):21334-21346
[75] Shi F, Li L, Wang X, et al. Metal oxide/hydroxide-based materials for supercapacitors[J]. RSC Adv, 2014, 4(79):41910-41921
[76] Hu C, Wang C, Chang K. A comparison study of the capacitive behavior for sol-gel-derived and co-annealed ruthenium-tin oxide composites[J]. Electrochimica Acta, 2007, 52(7):2691-2700
[77] Lee H, Cho M S, Kim I H, et al. RuOx/polypyrrole nanocomposite electrode for electrochemical capacitors[J]. Synthetic Metals, 2010, 160(9/10):1055-1059
[78] He X, Li R, Liu J, et al. Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors[J]. Chemical Engineering Journal, 2018, 334:1573-1583
[79] 陈昆峰, 杨阳阳, 陈旭, 等. 过渡金属材料的电化学储能性能研究[J]. 河南大学学报:自然科学版, 2014, 44(4):398-415 Chen Kunfeng, Yang Yangyang, Chen Xu,et al. Study of transition metal-based material for electrochemical energy storage[J]. Journal of Henan University:Natural Science, 2014, 44(4):398-415(in Chinese)
[80] Chen D, Wang Q, Wang R, et al. Ternary oxide nanostructured materials for supercapacitors:A review[J]. Journal of Materials Chemistry A, 2015, 3(19):10158-10173
[81] Wei C, Zhang R, Zheng X, et al. Hierarchical porous NiCo2O4/CeO2 hybrid materials for high performance supercapacitors[J]. Inorganic Chemistry Frontiers, 2018, 5(12):3126-3134
[82] Maiti S, Pramanik A, Mahanty S. Extraordinarily high pseudocapacitance of metal organic framework derived nanostructured cerium oxide[J]. Chem Commun, 2014, 50(79):11717-11720
[83] Zeng G J, Chen Y, Chen L, et al. Hierarchical cerium oxide derived from metal-organic frameworks for high performance supercapacitor electrodes[J]. Electrochimica Acta, 2016, 222:773-780
[84] Mehrez J A A, Owusu K A, Chen Q, et al. Hierarchical MnCo2O4@NiMoO4 as free-standing core-shell nanowire arrays with synergistic effect for enhanced supercapacitor performance[J]. Inorganic Chemistry Frontiers, 2019, 6(3):857-865
[85] Yi T, Li Y, Wu J, et al. Hierarchical mesoporous flower-like ZnCo2O4@NiO nanoflakes grown on nickel foam as high-performance electrodes for supercapacitors[J]. Electrochimica Acta, 2018, 284:128-141
[86] Li L, Li R, Gai S, et al. Facile fabrication and electrochemical performance of flower-like Fe3O4@C@layered double hydroxide (LDH) composite[J]. J Mater Chem A, 2014, 2(23):8758-8765
[87] Liang H, Lin J, Jia H, et al. Hierarchical NiCo-LDH/NiCoP@NiMn-LDH hybrid electrodes on carbon cloth for excellent supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(31):15040-15046
[88] Zhao J, Chen J, Xu S, et al. CoMn-Layered double hydroxide nanowalls supported on carbon fibers for high-performance flexible energy storage devices[J]. Journal of Materials Chemistry A, 2013, doi:10.1039/C3TA11452J
[89] 刘佛送, 陈春年. MOF衍生物-过渡金属硫化物作为高性能的超级电容器电极材料[J]. 安徽化工, 2019, 45(4):45-47, 50 Liu Fosong, Chen Chunnian. MOF-Derived transition metal sulfides for high performance supercapacitor[J]. Anhui Chemical Industry, 2019, 45(4):45-47, 50(in Chinese)
[90] Yu K, Tang W, Dai J. Double-Layer MnCo2S4@Ni-Co-S core/shell nanostructure on nickel foam for high-performance supercapacitor[J]. Physica Status Solid (A), 2018, doi:10.1002/pssa.201800147
[91] Ma L, Hu Y, Chen R, et al. Self-Assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution[J]. Nano Energy, 2016, 24:139-147
[92] Chen W, Xia C, Alshareef H N. One-Step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors[J]. ACS Nano, 2014, 8(9):9531-9541
[93] He W, Wang C, Li H, et al. Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors[J]. Advanced Energy Materials, 2017, doi:10.1002/aenm.201700983
[94] Yu X, Yu J, Hou L, et al. Double-Shelled hollow hetero-MnCo2S4/CoS1.097 spheres with carbon coating for advanced supercapacitors[J]. Journal of Power Sources, 2018, 408:65-73
[95] Guan B, Yu L, Wang X, et al. Formation of onion-like NiCo2S4 Particles via sequential ion-exchange for hybrid supercapacitors[J]. Advanced Materials, 2017, doi:10.1002/adma.201605051
[96] Chen H, Liu X, Zhang J, et al. Rational synthesis of hybrid NiCo2S4@MnO2 heterostructures for supercapacitor electrodes[J]. Ceramics International, 2016, 42(7):8909-8914
[97] Huang Y, Shi T, Jiang S, et al. Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors[J]. Scientific Reports, 2016, doi:10.1038/srep38620
|