[1] Raub J A, Benignus V A. Carbon monoxide and the nervous system[J]. Neuroscience & Biobehavioral Reviews, 2002, 26(8): 925-940
[2] Blumenthal I. Carbon monoxide poisoning[J]. Journal of the Royal Society of Medicine, 2001, 94(6): 270-272
[3] Green I X, Tang W, Neurock M, et al. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst[J]. Science, 2011, 333(6 043): 736-739
[4] Xie X, Li Y, Liu Z, et al. Low-Temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature, 2009, 458(7 239): 746-749
[5] Lopez N, Janssens T V W, Clausen B S, et al. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation[J]. Journal of Catalysis, 2004, 223(1): 232-235
[6] Ackermann M D, Pedersen T M, Hendriksen B L M, et al. Structure and reactivity of surface oxides on Pt (110) during catalytic CO oxidation[J]. Physical Review Letters, 2005, 95(25): 255 505.1-255 505.4
[7] Zhang C, Hu P. CO oxidation on Pd (100) and Pd (111): A comparative study of reaction pathways and reactivity at low and medium coverages[J]. Journal of the American Chemical Society, 2001, 123(6): 1 166-1 172
[8] Blume R, Hävecker M, Zafeiratos S, et al. Catalytically active states of Ru (0001) catalyst in CO oxidation reaction[J]. Journal of Catalysis, 2006, 239(2): 354-361
[9] Liu X, Liu J, Chang Z, et al. Crystal plane effect of Fe2O3 with various morphologies on CO catalytic oxidation[J]. Catalysis Communications, 2011, 12(6): 530-534
[10] Pan C, Zhang D, Shi L, et al. Template-Free synthesis, controlled conversion, and CO oxidation properties of CeO2 nanorods, nanotubes, nanowires, and nanocubes[J]. European Journal of Inorganic Chemistry, 2008, 2008(15): 2 429-2 436
[11] Zhou K, Wang R, Xu B, et al. Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes[J]. Nanotechnology, 2006, 17(15): 3 939-3 943
[12] Bao H, Zhang W, Hua Q, et al. Crystal-Plane-Controlled surface restructuring and catalytic performance of oxide nanocrystals[J]. Angewandte Chemie International Edition, 2011, 50(51): 12 294-12 298
[13] Kida T, Fujiyama S, Suematsu K, et al. Pore and particle size control of gas sensing films using SnO2 nanoparticles synthesized by seed-mediated growth: Design of highly sensitive gas sensors[J]. The Journal of Physical Chemistry C, 2013, 117(34): 17 574-17 582
[14] Chen J, Lou X. SnO2-Based nanomaterials: Synthesis and application in lithium-ion batteries[J]. Small, 2013, 9(11): 1 877-1 893
[15] Hossain M A, Jennings J R, Koh Z Y, et al. Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells exhibiting unprecedented photocurrent densities[J]. ACS Nano, 2011, 5(4): 3 172-3 181
[16] Wang S, Huang J, Zhao Y, et al. Preparation, characterization and catalytic behavior of SnO2 supported Au catalysts for low-temperature CO oxidation[J]. Journal of Molecular Catalysis A: Chemical, 2006, 259(1): 245-252
[17] Roller J M, Yu H, Zhang L, et al. Evaluation of phase segregation in ternary Pt-Rh-SnO2 catalysts prepared from the vapor phase[J]. Microscopy and Microanalysis, 2014, 20(S3): 462-463
[18] Baidya T, Gupta A, Deshpandey P A, et al. High oxygen storage capacity and high rates of CO oxidation and NO reduction catalytic properties of Ce1-xSnxO2 and Ce0.78Sn0.2Pd0.02O2-δ[J]. The Journal of Physical Chemistry C, 2009, 113(10): 4 059-4 068
[19] Li Y, Peng H, Xu X, et al. Facile preparation of mesoporous Cu-Sn solid solutions as active catalysts for CO oxidation[J]. RSC Advances, 2015, 5(33): 25 755-25 764
[20] Liu C, Xian H, Jiang Z, et al. Insight into the improvement effect of the Ce doping into the SnO2 catalyst for the catalytic combustion of methane[J]. Applied Catalysis B: Environmental, 2015, 176: 542-552
[21] Sun Y, Lei F, Gao S, et al. Atomically thin tin dioxide sheets for efficient catalytic oxidation of carbon monoxide[J]. Angewandte Chemie International Edition, 2013, 125(40): 10 763-10 766
[22] Xu X, Liu F, Han X, et al. Elucidating the promotional effects of niobia on SnO2 for CO oxidation: developing an XRD extrapolation method to measure the lattice capacity of solid solutions[J]. Catalysis Science & Technology, 2016. DOI: 10.1039/C5CY01870F
[23] Zhang R, Shang J, Zeng X, et al. SnO2 promoted by praseodymia: Novel catalysts for CO oxidation[J]. Zeitschrift für Physikalische Chemie International Journal of Research in Physical Chemistry and Chemical Physics, 2012, 226(4): 275-290
[24] Wang X, Tian J, Zheng Y, et al. Tuning Al2O3 surface with SnO2 to prepare improved supports for Pd for CO oxidation[J]. Chem Cat Chem, 2014, 6(6): 1 604-1 611
|