[1] Kharton V V, Marques F M B, Atkinson A. Transport properties of solid oxide electrolyte ceramics: A brief review [J]. Solid State Ionics, 2004, 174(1): 135-149
[2] Inaba H, Tagawa H. Ceria-Based solid electrolytes[J]. Solid State Ionics, 1996, 83(1): 1-16
[3] Liu X, Zhu B, Xu J, et al. Sulphate-Ceria composite ceramics for energy environmental co-generation technology[J]. Key Engineering Materials, 2004, 280: 425-430
[4] Zhu B. Functional ceria-salt-composite materials for advanced ITSOFC applications [J]. Journal of Power Sources, 2003, 114(1):1-9
[5] Zhu B, Liu X, Zhou P, et al. Innovative solid carbonate-ceria composite electrolyte fuel cells[J]. Electrochemistry Communications, 2001, 3(10): 566-571
[6] Zhao Y, Xia C, Xu Z, et al. Validation of H+/O2- conduction in doped ceria-carbonate composite material using an electrochemical pumping method [J]. International Journal of Hydrogen Energy, 2012, 37(15): 11 378-11 382
[7] Zhu B, Albinsson I, Andersson C, et al. Electrolysis studies based on ceria-based composites[J]. Electrochemistry Communications, 2006, 8(3): 495-498
[8] Zhu B, Mat M D. Studies on dual phase ceria-based composites in electrochemistry[J]. International Journal of Electrochemical Sciences, 2006, 1(8): 383-402
[9] Zhu B. Next generation fuel cell R&D[J]. International Journal of Energy Research, 2006, 30(11): 895-903
[10] Zhu B, Li S, Mellander B E. Theoretical approach on ceria-based two-phase electrolytes for low temperature (300~600 C) solid oxide fuel cells[J]. Electrochemistry Communications, 2008, 10(2): 302-305
[11] Liu W, Liu Y, Li B, et al. Ceria (Sm3+, Nd3+)/carbonates composite electrolytes with high electrical conductivity at low temperature[J]. Composites Science and Technology, 2010, 70(1): 181-185
[12] Zhao Y, Xia C, Wang Y, et al. Quantifying multi-ionic conduction through doped ceria-carbonate composite electrolyte by a current-interruption technique and product analysis[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8 556-8 561
[13] Zhao Y, Xu Z, Xia C, et al. Oxide ion and proton conduction in doped ceria-carbonate composite materials [J]. International Journal of Hydrogen Energy, 2013, 38(3): 1 553-1 559
[14] Yin H, Tang D, Zhu H, et al. Production of iron and oxygen in molten K2CO3-Na2CO3 by electrochemically splitting Fe2O3 using a cost affordable inert anode[J]. Electrochemistry Communications, 2011, 13(12): 1 521-1 524
[15] Tang D, Yin H, Xiao W, et al. Reduction mechanism and carbon content investigation for electrolytic production of iron from solid Fe2O3 in molten K2CO3-Na2CO3 using an inert anode[J]. Journal of Electroanalytical Chemistry, 2013, 689: 109-116
[16] Wang X, Ma Y, Li S, et al. Ceria-Based nanocomposite with simultaneous proton and oxygen ion conductivity for low-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2011, 196(5): 2 754-2 758
[17] Huang J, Mao Z, Yang L, et al. SDC-Carbonate composite electrolytes for low-temperature SOFCs [J]. Electrochemical and Solid-State Letters, 2005, 8(9): A437-A440
[18] Liu R, Xie Y, Wang J, et al. Synthesis of ammonia at atmospheric pressure with Ce0.8M0.2O2-δ(M=La, Y, Gd, Sm) and their proton conduction at intermediate temperature [J]. Solid State Ionics, 2006, 177(1): 73-76
[19] Sun W, Shi Z, Liu W. Considerable hydrogen permeation behavior through a dense Ce0.8Sm0.2O2-δ(SDC) asymmetric thick film [J]. Journal of the Electrochemical Society, 2013, 160(6): F585-F590
|