[1] Ottakam T M M, Freunberger S A, Peng Z, et al, A stable cathode for the aprotic Li-O2 battery[J]. Nature Materials, 2013, 12(11): 1 050-1 056
[2] Wang H, Yang Y, Liang Y, et al. Rechargeable Li-O2 batteries with a covalently coupled MnCo2O4-graphene hybrid as an oxygen cathode catalyst[J]. Energy & Environmental Science, 2012, 5(7): 7 931-7 935
[3] Liu Y, Cao L, Cao C, et al. Facile synthesis of spinel CuCo2O4 nanocrystals as high-performance cathode catalysts for rechargeable Li-air batteries[J]. Chemical Communications, 2014, 50(93): 14 635-14 638
[4] Zhang Z, Su L, Yang M, et al. A composite of Co nanoparticles highly dispersed on N-rich carbon substrates: An efficient electrocatalyst for Li-O2 battery cathodes[J]. Chemical Communications, 2014, 50(7): 776-778
[5] Lu J, Li L, Park J B, et al. Aprotic and aqueous Li-O2 batteries[J]. Chemical Reviews, 2014, 114(11): 5 611-5 640
[6] Shao Y, Ding F, Xiao J, et al. Making Li-air batteries rechargeable: Material challenges[J]. Advanced Functional Materials, 2013, 23(8): 987-1 004
[7] Zhang L, Zhang S, Zhang K, et al. Mesoporous NiCo2O4 nanoflakes as electrocatalysts for rechargeable Li-O2 batteries[J]. Chemical Communications, 2013, 49(34): 3 540-3 542
[8] Han X, Hu Y, Yang J, et al. Porous perovskite CaMnO3 as an electrocatalyst for rechargeable Li-O2 batteries[J]. Chemical Communications, 2014, 50(12): 1 497-1 499
[9] Zhang J, Zhao Y, Zhao X, et al. Porous perovskite LaNiO3 nanocubes as cathode catalysts for Li-O2 batteries with low charge potential[J]. Scientific Reports, 2014, 4: 6 005-6 005
[10] Sun B, Huang X, Chen S, et al. Hierarchical macroporous/mesoporous NiCo2O4 nanosheets as cathode catalysts for rechargeable Li-O2 batteries[J]. Journal of Materials Chemistry A, 2014, 2(30): 12 053-12 059
[11] Shui J L, Karan N K, Balasubramanian M, et al. Fe/N/C composite in Li-O2 battery: Studies of catalytic structure and activity toward oxygen evolution reaction[J]. Journal of the American Chemical Society, 2012, 134(40): 16 654-16 661
[12] Wang Z, Xu D, Xu J, et al. Oxygen electrocatalysts in metal-air batteries: From aqueous to nonaqueous electrolytes[J]. Chemical Society Reviews, 2014, 43(22): 7 746-7 786
[13] Chen Z, Yu A, Higgins D, et al. Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application[J]. Nano Letters, 2012, 12(4): 1 946-1 952
[14] Zhou W, Zhang H, Nie H, et al. Hierarchical micron-sized mesoporous/macroporous graphene with well-tuned surface oxygen chemistry for high capacity and cycling stability Li-O2 battery[J]. ACS Applied Materials & Interfaces, 2015, 7(5):3 389-3 397
[15] Wang L, Ara M, Wadumesthrige K, et al. Graphene nanosheet supported bifunctional catalyst for high cycle life Li-air batteries[J]. Journal of Power Sources, 2013, 234: 8-15
[16] Yu N, Kuai L, Wang Q, et al. Pt nanoparticles residing in the pores of porous LaNiO3 nanocubes as high-efficiency electrocatalyst for direct methanol fuel cells[J]. Nanoscale, 2012, 4(17): 5 386-5 393
[17] Lu Y, Xu Z, Gasteiger H A, et al. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries[J]. Journal of the American Chemical Society, 2010, 132(35): 12 170-12 171
[18] Li F, Ohnishi R, Yamada Y, et al. Carbon supported TiN nanoparticles: An efficient bifunctional catalyst for non-aqueous Li-O2 batteries[J]. Chemical Communications, 2013, 49(12): 1 175-1 177
[19] Zhang K, Zhang L, Chen X, et al. Molybdenum nitride/N-doped carbon nanospheres for lithium-O2 battery cathode electrocatalyst[J]. ACS Applied Materials & Interfaces, 2013, 5(9): 3 677-3 682
[20] Meng H, Jaouen F, Proietti E, et al. pH-effect on oxygen reduction activity of Fe-based electro-catalysts[J]. Electrochemistry Communications, 2009, 11(10): 1 986-1 989
[21] Bezerra C W, Zhang L, Lee K, et al. A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction[J]. Electrochimica Acta, 2008, 53(15): 4 937-4 951
[22] Li J, Zou M, Wen W, et al. Spinel MFe2O4 (M=Co, Ni) nanoparticles coated on multi-walled carbon nanotubes as electrocatalysts for Li-O2 batteries[J]. Journal of Materials Chemistry A, 2014, 2(26): 10 257-10 262
[23] Han X, Cheng F, Chen C, et al. Uniform MnO2 nanostructures supported on hierarchically porous carbon as efficient electrocatalysts for rechargeable Li-O2 batteries[J]. Nano Research, 2014: 1-9
[24] Liu S, Zhu Y, Xie J, et al. Direct growth of flower-like δ-MnO2 on three-dimensional graphene for high-performance rechargeable Li-O2 batteries[J]. Advanced Energy Materials, 2014. Doi: 10.1002/aenm.201301960
[25] Truong T T, Liu Y, Ren Y, et al. Morphological and crystalline evolution of nanostructured MnO2 and its application in lithium-air batteries[J]. Acs Nano, 2012, 6(9): 8 067-8 077
[26] Kim D S, Park Y J, Ketjen. Black/Co3O4 nanocomposite prepared using polydopamine pre-coating layer as a reaction agent: Effective catalyst for air electrodes of Li/air batteries[J]. Journal of Alloys and Compounds, 2013, 575: 319-325
[27] Yang W, Salim J, Ma C, et al. Flowerlike Co3O4 microspheres loaded with copper nanoparticle as an efficient bifunctional catalyst for lithium-air batteries[J]. Electrochemistry Communications, 2013, 28: 13-16
[28] Lu F, Cao X, Wang Y, et al. A hierarchical NiCo2O4 spinel nanowire array as an electrocatalyst for rechargeable Li-air batteries[J]. RSC Advances, 2014, 4(76): 40 373-40 376
[29] Liu W, Gao T, Yang Y, et al. A hierarchical three-dimensional NiCo2O4 nanowire array/carbon cloth as an air electrode for nonaqueous Li-air batteries[J]. Phys Chem Chem Phys, 2013, 15(38): 15 806-15 810
[30] Hu Y, Han X, Cheng F, et al. Size effect of lithium peroxide on charging performance of Li-O2 batteries[J]. Nanoscale, 2013, 6(1): 177-180
[31] Yuasa M, Imamura H, Nishida M, et al. Preparation of nano-LaNiO3 support electrode for rechargeable metal-air batteries[J]. Electrochemistry Communications, 2012, 24: 50-52
[32] Hardin W G, Slanac D A, Wang X, et al. Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal-air battery electrodes[J]. The Journal of Physical Chemistry Letters, 2013, 4(8): 1 254-1 259
[33] 张明,徐强,桑林,等. 空气电极对空气电池放电性能的影响[J]. 电源技术, 2013, 37(7):1 130-1 132 Zhang Ming, Xu Qiang, Sang Lin, et al. Effect of air electrode on discharge performance of lithium-air batteries[J]. Chinese Journal of Power Sources, 2013, 37(7): 1 130-1 132 (in Chinese)
[34] Zhang M, Xu Q, Sang L, et al. α-MnO2 nanoneedle-based hollow microspheres coated with Pd nanoparticles as a novel catalyst for rechargeable lithium—air batteries[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(1): 164-170
[35] 任现平,刘桂成,徐国峰,等. 过渡金属氧化物用作锂空气电池催化剂[J]. 电池, 2014, 44(1): 6-8 Ren Xianping, Liu Guicheng, Xu Guofeng, et al. Using transition metal oxide as catalyst of lithium-air battery[J]. Battery Bimonthly, 2014, 44(1): 6-8 (in Chinese)
|