[1] He W, Yi J, Van Nguyen T. Two-Phase flow model of the cathode of PEM fuel cells using interdigitated flow fields[J]. AIChE Journal, 2000, 46(10): 2 053-2 064
[2] Wilson M S, Gottesfeld S. Thin-Film catalyst layers for polymer electrolyte fuel cell electrodes[J]. Journal of Applied Electrochemistry, 1992, 22(1): 1-7
[3] Kazim A, Liu H, Forges P. Modelling of performance of PEM fuel cells with conventional and interdigitated flow fields[J]. Journal of Applied Electrochemistry, 1999, 29(12): 1 409-1 416
[4] Tiedemann W, Newman J. Maximum effective capacity in an ohmically limited porous electrode[J]. Journal of the Electrochemical Society, 1975, 122(11): 1 482-1 485
[5] Khajeh-Hosseini-Dalasm N, Kermani M J, Moghaddam D G, et al. A parametric study of cathode catalyst layer structural parameters on the performance of a PEM fuel cell[J]. International Journal of Hydrogen Energy, 2010, 35(6): 2 417-2 427
[6] You L, Liu H. A parametric study of the cathode catalyst layer of PEM fuel cells using a pseudo-homogeneous model[J]. International Journal of Hydrogen Energy, 2001, 26(9): 991-999
[7] Song D, Wang Q, Liu Z, et al. Numerical optimization study of the catalyst layer of PEM fuel cell cathode[J]. Journal of Power Sources, 2004, 126(1): 104-111
[8] Song D, Wang Q, Liu Z, et al. A method for optimizing distributions of Nafion and Pt in cathode catalyst layers of PEM fuel cells[J]. Electrochimica Acta, 2005, 50(16): 3 347-3 358
[9] Ahadian S, Khajeh-Hosseini-Dalasm N, Fushinobu K, et al. An effective computational approach to the parametric study of the cathode catalyst layer of PEM fuel cells[J]. Materials Transactions, 2011, 52(10): 1 954-1 959
[10] Marr C, Li X. Composition and performance modelling of catalyst layer in a proton exchange membrane fuel cell[J]. Journal of Power Sources, 1999, 77(1): 17-27
[11] Kamarajugadda S, Mazumder S. Numerical investigation of the effect of cathode catalyst layer structure and composition on polymer electrolyte membrane fuel cell performance[J]. Journal of Power Sources, 2008, 183(2): 629-642
[12] Yang T, Cheng C, Su A, et al. Numerical analysis of the manipulated high performance catalyst layer design for polymer electrolyte membrane fuel cell[J]. International Journal of Energy Research, 2014, 38(15): 1 937-1948
[13] Hu G, Li G, Zheng Y, et al. Optimization and parametric analysis of PEMFC based on an agglomerate model for catalyst layer[J]. Journal of the Energy Institute, 2014, 87(2): 163-174
[14] Khajeh-Hosseini-Dalasm N, Fesanghary M, Fushinobu K, et al. A study of the agglomerate catalyst layer for the cathode side of a proton exchange membrane fuel cell: Modeling and optimization[J]. Electrochimica Acta, 2012, 60: 55-65
[15] Secanell M, Karan K, Suleman A, et al. Multi-Variable optimization of PEMFC cathodes using an agglomerate model[J]. Electrochimica Acta, 2007, 52(22): 6 318-6 337
[16] Secanell M, Songprakorp R, Djilali N, et al. Optimization of a proton exchange membrane fuel cell membrane electrode assembly[J]. Structural and Multidisciplinary Optimization, 2010, 40(1/6): 563-583
[17] El Hannach M, Pauchet J, Prat M. Pore network modeling: Application to multiphase transport inside the cathode catalyst layer of proton exchange membrane fuel cell[J]. Electrochimica Acta, 2011, 56(28): 10 796-10 808
[18] El Hannach M, Prat M, Pauchet J. Pore network model of the cathode catalyst layer of proton exchange membrane fuel cells: Analysis of water management and electrical performance[J]. International Journal of Hydrogen Energy, 2012, 37(24): 18 996-19 006
[19] Wu R, Liao Q, Zhu X, et al. Pore network modeling of cathode catalyst layer of proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(15): 11 255-11 267
[20] Wei Z, Ran H, Liu X, et al. Numerical analysis of Pt utilization in PEMFC catalyst layer using random cluster model[J]. Electrochimica Acta, 2006, 51(15): 3 091-3 096
[21] Mukherjee P P, Wang C. Stochastic microstructure reconstruction and direct numerical simulation of the PEFC catalyst layer[J]. Journal of the Electrochemical Society, 2006, 153(5): A840-A849
[22] Wang G, Mukherjee P P, Wang C. Optimization of polymer electrolyte fuel cell cathode catalyst layers via direct numerical simulation modeling[J]. Electrochimica Acta, 2007, 52(22): 6 367-6 377
[23] 曹鹏贞. PEMFC催化层的Monte Carlo模拟[D]. 天津:天津大学,2007 Cao Pengzhen. The Monte Carlo simulation on the catalyst layer of PEMFC[D]. Tianjin: Tianjin University, 2007(in Chinese)
[24] 张洁婧. PEMFC 电极微观结构模拟[D]. 天津:天津大学, 2011 Zhang Jiejing. Simulations of the PEMFC electrode microstructure[D]. Tianjin: Tianjin University, 2011(in Chinese)
[25] 陈秋香. 聚合物膜燃料电池催化层微观模拟研究[D]. 天津:天津大学,2013 Chen Qiuxiang. A study on the macro-modeling of catalyst layer in PEM fuel cell[D]. Tianjin: Tianjin University, 2013(in Chinese)
[26] Robert E, Tobias C W. On the conductivity of dispersions[J]. Journal of The Electrochemical Society, 1959, 106(9): 827-833
[27] Parthasarathy A, Srinivasan S, Appleby A J, et al. Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion © interface - A microelectrode investigation[J]. Journal of the Electrochemical Society, 1992, 139(9): 2 530-2 537
[28] Shabgard H R. Investigation and analysis of the condensation phenomena in the cathode electrode of PEM fuel cells[D]. MSc thesis: Amirkabir University of Technology (Tehran Polytechnic), Iran, 2006
[29] Ticianelli E A, Derouin C R, Redondo A, et al. Methods to advance technology of proton exchange membrane fuel cells[J]. Journal of the Electrochemical Society, 1988, 135(9): 2 209-2 214
[30] Pourmahmoud N, Rezazadeh S, Mirzaee I, et al. Three-Dimensional numerical analysis of proton exchange membrane fuel cell[J]. Journal of Mechanical Science and Technology, 2011, 25(10): 2 665-2 673
|