[1] Liu Y, Liu B, Liu Y, et al. Improvement of catalytic performance of preferential oxidation of CO in H2-rich gases on three-dimensionally ordered macro-and meso-porous Pt-Au/CeO2 catalysts[J]. Appl Catal B, 2013, 142/143: 615-625
[2] Wu J, Yuan X, Martin J J, et al. A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies[J]. J Power Sources, 2008, 184(1): 104-119
[3] Liu K, Wang A, Zhang T. Recent advances in preferential oxidation of CO reaction over platinum group metal catalysts[J]. ACS Catal, 2012, 2(6): 1 165-1 178
[4] Trimm D L. Minimisation of carbon monoxide in a hydrogen stream for fuel cell application[J]. Appl Catal A, 2005, 296(1): 1-11
[5] Niu T, Shen L, Liu Y. Preparation of meso-macroporous α-alumina using carbon nanotube as the template for the mesopore and their application to the preferential oxidation of CO in H2-rich gases[J]. J Porous Mater, 2013, 20(4): 789-798
[6] Perkas N, Teo J, Shen S, et al. Supported Ru catalysts prepared by two sonication-assisted methods for preferential oxidation of CO in H2[J]. Phys Chem Chem Phys, 2011, 13(34): 15 690-15 698
[7] Son I H, Shamsuzzoha M, Lane A M. Promotion of Pt/γ-Al2O3 by new pretreatment for low-temperature preferential oxidation of CO in H2 for PEM fuel cells[J]. J Catal, 2002, 210(2): 460-465
[8] Park E D, Lee D, Lee H C. Recent progress in selective CO removal in a H2-rich stream[J]. Catal Today, 2009, 139(4): 280-290
[9] Mishra A, Prasad R. A review on preferential oxidation of carbon monoxide in hydrogen rich gases[J]. Bull Chem React Eng Catal, 2011, 6(1): 1-14
[10] Liu Y, Fu Q, Stephanopoulos M F. Preferential oxidation of CO in H2 over CuO-CeO2 catalysts[J]. Catal Today, 2004, 93/95(0): 241-246
[11] Jung C R, Han J, Nam S W, et al. Selective oxidation of CO over CuO-CeO2 catalyst: Effect of calcination temperature[J]. Catal Today, 2004, 93/95: 183-190
[12] Martinez-Arias A, Hungria A B, Fernandez-Garcia M, et al. Preferential oxidation of CO in a H2-rich stream over CuO/CeO2 and CuO/(Ce, M)O<i>x (M=Zr, Tb) catalysts[J]. J Power Sources, 2005, 151(0): 32-42
[13] Guo Q, Liu Y. MnOx modified Co3O4-CeO2 catalysts for the preferential oxidation of CO in H2-rich gases[J]. Appl Catal B, 2008, 82(1/2): 19-26
[14] Guo Q, Wu M, Liu Y, et al. Mesoporous CeO2-supported Co3O4 catalysts for CO preferential oxidation in H2-rich gases[J]. Chin J Catal, 2007, 28(11): 953-957
[15] Wang Y, Yoon Y, Glezakou V A, et al. The role of reducible oxide-metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics[J]. J Am Chem Soc, 2013, 135(29): 10 673-10 683
[16] Denkwitz Y, Schumacher B, Kucěrova G, et al. Activity, stability, and deactivation behavior of supported Au/TiO2 catalysts in the CO oxidation and preferential CO oxidation reaction at elevated temperatures[J]. J Catal, 2009, 267(1): 78-88
[17] Ilieva L, Pantaleo G, Ivanov I, et al. A comparative study of differently prepared rare earths-modified ceria-supported gold catalysts for preferential oxidation of CO[J]. Int J Hydrogen Energy, 2009, 34(15): 6 505-6 515
[18] Gu C, Lu S, Miao J, et al. Meso-Macroporous monolithic CuO-CeO2/γ/α-Al2O3 catalysts for CO preferential oxidation in hydrogen-rich gas: Effect of loading methods[J]. Int J Hydrogen Energy, 2010, 35(12): 6 113-6 122
[19] Bion N, Epron F, Moreno M, et al. Preferential oxidation of carbon monoxide in the presence of hydrogen (PROX) over noble metals and transition metal oxides: Advantages and drawbacks[J]. Top Catal, 2008, 51(1/4): 76-88
[20] Mu R, Fu Q, Xu H, et al. Synergetic effect of surface and subsurface Ni species at Pt-Ni bimetallic catalysts for CO oxidation[J]. J Am Chem Soc, 2011, 133(6): 1 978-1 986
[21] Ko E Y, Park E D, Seo K, et al. Pt-Ni/γ-Al2O3 catalyst for the preferential CO oxidation in the hydrogen stream[J]. Catal Lett, 2006, 110(3/4): 275-279
[22] Xu H, Fu Q, Guo X, et al. Architecture of Pt-Co bimetallic catalysts for catalytic CO oxidation[J]. Chem Cat Chem, 2012, 4(10): 1 645-1 652
[23] Wang C, Li B, Lin H, et al. Carbon nanotube-supported Pt-Co bimetallic catalysts for preferential oxidation of CO in a H2-rich stream with CO2 and H2O vapor[J]. J Power Sources, 2012, 202: 200-208
[24] Ko E Y, Park E D, Lee H C, et al. Supported Pt-Co catalysts for selective CO oxidation in a hydrogen-rich stream[J]. Angew Chem Int Ed, 2007, 46(5): 734-737
[25] Xu H, Fu Q, Yao Y, et al. Highly active Pt-Fe bicomponent catalysts for CO oxidation in the presence and absence of H2[J]. Energy Environ Sci, 2012, 5(4): 6 313-6 320
[26] 唐晓兰, 张保才, 李勇, 等. 用于CO选择氧化反应的新型Pt-Fe/Al2O3催化剂[J]. 催化学报, 2005, 26(1): 1-3 Tang Xiaolan, Zhang Baocai, Li Yong, et al. Novel Pt-Fe/Al2O3 catalyst for CO selective oxidation[J]. Chin J Catal, 2005, 26(1): 1-3 (in Chinese)
[27] Yin J, Wang J, Zhang T, et al. Novel alumina-supported PtFe alloy nanoparticles for preferential oxidation of carbon monoxide in hydrogen[J]. Catal Lett, 2008, 125(1/2): 76-82
[28] Komatsu T, Takasaki M, Ozawa K, et al. PtCu intermetallic compound supported on alumina active for preferential oxidation of CO in hydrogen[J]. J Phys Chem C, 2013, 117(20): 10 483-10 491
[29] Yu X, Yu W, Li H, et al. Preparation, characterization and application of K-PtCo/Al2O3 catalyst coatings for preferential CO oxidation[J]. Appl Catal B, 2013, 140/141: 588-597
[30] Wang F, Lu G. High performance rare earth oxides LnO<i>x (Ln=La, Ce, Nd, Sm and Dy)-modified Pt/SiO2 catalysts for CO oxidation in the presence of H2[J]. J Power Sources, 2008, 181(1): 120-126
[31] Tanaka H, Kuriyama M, Ishida Y, et al. Preferential CO oxidation in hydrogen-rich stream over Pt catalysts modified with alkali metals: Part I. Catalytic performance[J]. Appl Catal A, 2008, 343(1/2): 117-124
[32] Atalik B, Uner D. Structure sensitivity of selective CO oxidation over Pt/γ-Al2O3[J]. J Catal, 2006, 241(2): 268-275
[33] Fu Q, Li W, Yao Y, et al. Interface-Confined ferrous centers for catalytic oxidation[J]. Science, 2010, 328(5 982): 1 141-1 144
[34] Siani A, Captain B, Alexeev O S, et al. Improved CO oxidation activity in the presence and absence of hydrogen over cluster-derived PtFe/SiO2 Catalysts[J]. Langmuir, 2006, 22(11): 5 160-5 167
[35] Kotobuki M, Watanabe A, Uchida H, et al. Reaction mechanism of preferential oxidation of carbon monoxide on Pt, Fe, and Pt-Fe/mordenite catalysts[J]. J Catal, 2005, 236(2): 262-269
[36] Pozdnyakova O, Teschner D, Wootsch A, et al. Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part II: Oxidation states and surface species on Pd/CeO2 under reaction conditions, suggested reaction mechanism[J]. J Catal, 2006, 237(1): 17-28
[37] Ayastuy J L, Gil-Rodriguez A, Gonzalez-Marcos M P, et al. Effect of process variables on Pt/CeO2 catalyst behaviour for the PROX reaction[J]. Int J Hydrogen Energy, 2006, 31(15): 2 231-2 242
[38] Parinyaswan A, Pongstabodee S, Luengnaruemitchai A. Catalytic performances of Pt-Pd/CeO2 catalysts for selective CO oxidation[J]. Int J Hydrogen Energy, 2006, 31(13): 1 942-1 949
[39] Luengnaruemitchai A, Nimsuk M, Naknam P, et al. A comparative study of synthesized and commercial A-type zeolite-supported Pt catalysts for selective CO oxidation in H2-rich stream[J]. Int J Hydrogen Energy, 2008, 33(1): 206-213
[40] Lu S, Zhang C, Liu Y. Carbon nanotube supported Pt-Ni catalysts for preferential oxidation of CO in hydrogen-rich gases[J]. Int J Hydrogen Energy, 2011, 36(3): 1 939-1 948
[41] Zhang J, Wang R, Liu E, et al. Spherical structures composed of multiwalled carbon nanotubes: Formation mechanism and catalytic performance[J]. Angew Chem Int Ed, 2012, 51(30): 7 581-7 585
[42] Lu S, Liu Y. Preparation of meso-macroporous carbon nanotube-alumina composite monoliths and their application to the preferential oxidation of CO in hydrogen-rich gases[J]. Appl Catal B, 2012, 111/112: 492-501
[43] Kim D Y, Yang C M, Park Y S, et al. Characterization of thin multi-walled carbon nanotubes synthesized by catalytic chemical vapor deposition[J]. Chem Phys Lett, 2005, 413(1/3): 135-141
[44] Zaman A C, Vstunda? C B, Çelik A, et al. Carbon nanotube/boehmite-derived alumina ceramics obtained by hydrothermal synthesis and spark plasma sintering (SPS)[J]. J Eur Ceram Soc, 2010, 30(16): 3 351-3 356
[45] Hsieh C T, Lin J, Wei J. Deposition and electrochemical activity of Pt-based bimetallic nanocatalysts on carbon nanotube electrodes[J]. Int J Hydrogen Energy, 2009, 34(2): 685-693
[46] Caputo T, Lisi L, Pirone R, et al. Kinetics of the preferential oxidation of CO over CuO/CeO2 catalysts in H2-rich gases[J]. Ind Eng Chem Res, 2007, 46(21): 6 793-6 800
[47] Choi Y, Stenger H G. Kinetics, simulation and insights for CO selective oxidation in fuel cell applications[J]. J Power Sources, 2004, 129(2): 246-254
[48] Chen L, Ma D, Zhang Z, et al. Low Pt loading high catalytic performance of PtFeNi/carbon nanotubes catalysts for CO preferential oxidation in excess hydrogen I: Promotion effects of Fe and/or Ni[J]. Catal Lett, 2012, 142(8): 975-983
[49] Komatsu T, Tamura A. Pt3Co and PtCu intermetallic compounds: Promising catalysts for preferential oxidation of CO in excess hydrogen[J]. J Catal, 2008, 258(2): 306-314
[50] Zhou S, Yuan Z, Wang S. Selective CO oxidation with real methanol reformate over monolithic Pt group catalysts: PEMFC applications[J]. Int J Hydrogen Energy, 2006, 31(7): 924-933
[51] Yang H, Wang C, Li B, et al. Doping effects of Ni-MgO on the structure and performance of carbon nanotube-supported Pt catalysts for preferential oxidation of CO in a H2 stream[J]. Appl Catal A, 2011, 402(1/2): 168-175
|