[1] Spivey J J, Egbebi A. Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas[J]. Chemical Society Reviews, 2007, 36(9): 1 514-1 528
[2] Subramani V, Gangwal S K. A review of recent literature to search for an efficient catalytic process for conversion of syngas to ethanol[J]. Energy & Fuels, 2008, 22(2): 814-839
[3] Mei D H, Rousseau R, Kathmann S M, et al. Ethanol synthesis from syngas over Rh-based/SiO2 catalyst: A combined experimental and theoretical modeling study[J]. Journal of Catalysis, 2010, 271(2): 325-342
[4] 唐宏青.合成乙醇新技术展望[J]. 中氮肥, 2012, (2): 1-6, 64 Tang Hongqing. Outlook for new ethanol synthesis technology[J]. M-Sized Nitrogenous Fertilizer Progress, 2012, (2): 1-6, 64(in Chinese)
[5] Chum H L, Overend R P. Biomass and renewable fuels[J]. Fuel Processing Technology, 2001, 71(1): 187-195
[6] 刘晓娟, 吴晓斌, 郑文耀, 等. 玉米芯HNO3/HCl预处理及同步糖化发酵制乙醇[J]. 化学工业与工程, 2013, 30(5): 16-20 Liu Xiaojuan, Wu Xiaobin, Zheng Wenyao, et al. Pretreatment of corn cob with HNO3/HCl and ethanol production by simultaneous saccrification and fermentation [J]. Chemical Industry and Engineering, 2013, 30(5): 16-20(in Chinese)
[7] Pan X, Fan Z, Chen W, et al. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles[J]. Nature Materials, 2007, 6(7): 507-511
[8] Haider M A, Gogate M R, Davis R J. Fe-Promotion of supported Rh catalysts for direct conversion of syngas to ethanol[J]. Journal of Catalysis, 2009, 261(1): 9-16
[9] Li X, San X, Zhang Y, et al. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-Mordenite and Cu/ZnO catalysts[J]. Chem Sus Chem, 2010, 3(10): 1 192-1 199
[10] Yang G, San X, Jiang N, et al. A new method of ethanol synthesis from dimethyl ether and syngas in a sequential dual bed reactor with the modified zeolite and Cu/ZnO catalysts[J]. Catalysis Today, 2011, 164(1): 425-428
[11] 伞晓广, 任庆生. 二甲醚合成乙醇的新方法[J]. 甲醇生产与应用技术, 2010, (1): 23-25 San Xiaoguang, Ren Qingsheng. A new method of ethanol synthesis from dimethyl ether[J]. Production and Application Technology of the Methanol, 2010, (1): 23-25(in Chinese)
[12] Claus P, Lucas M, Lücke B, et al. Selective hydrogenolysis of methyl and ethyl acetate in the gas phase on copper and supported group VIII metal catalysts[J]. Applied Catalysis A: General, 1991, 79(1): 1-18
[13] Cheung P, Bhan A, Sunley G J, et al. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites[J]. Journal of Catalysis, 2007, 245(1): 110-123
[14] Bhan A, Allian A D, Sunley G J, et al. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls[J]. Journal of the American Chemical Society, 2007, 129(16): 4 919-4 924
[15] Cheung P, Bhan A, Sunley G J, et al. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites[J]. Angewandte Chemie International Edition, 2006, 45(10): 1 617-1 620
[16] Bhan A, Iglesia E. A link between reactivity and local structure in acid catalysis on zeolites[J]. Accounts of Chemical Research, 2008, 41(4): 559-567
[17] Liu J, Xue H, Huang X, et al. Stability enhancement of H-mordenite in dimethyl ether carbonylation to methyl acetate by pre-adsorption of pyridine[J]. Chinese Journal of Catalysis, 2010, 31(7): 729-738
[18] Boronat M, Martinez-Snchez C, Law D, et al. Enzyme-Like specificity in zeolites: A unique site position in mordenite for selective carbonylation of methanol and dimethyl ether with CO[J]. Journal of the American Chemical Society, 2008, 130(48): 16 316-16 323
|