[1] 冀琳彦, 倪丽耐, 王洪昌. 城市污水可持续处理技术探讨[J]. 工业安全与环保, 2008, 34(4): 24-26 Ji Linyan, Ni Linai, Wang Hongchang. Study of the sustainable treatment for urban wastewater[J]. Industrial Safety and Environmental Protection, 2008, 34(4): 24-26(in Chinese)
[2] 郝晓地, 王啟林, 李永丽. 可持续的水与污水处理前沿技术[J]. 中国给水排水, 2008, 24(20): 1-6 Hao Xiaodi, Wang Qilin, Li Yongli. Overview of leading-edge technologies for sustainable water and wastewater treatment[J]. China Water and Wastewater, 2008, 24(20): 1-6( in Chinese)
[3] McCarty P L. One hundered years of anaerobic treatment, anaerobic digestion[R]. Proceeding of the Second Int. Symp. on Anaerobic Digestion, 1981: 3-22
[4] 王凯军. 厌氧工艺的发展和新型厌氧反应器[J]. 环境科学, 1998, 19(1): 94-96 Wang Kaijun. Development of anaerobic processes and new type anaerobic Reactors[J]. Environmental Science, 1998, 19(1): 94-96(in Chinese)
[5] 任南琪, 郭婉茜, 刘冰峰. 生物制氢技术的发展及应用前景[J]. 哈尔滨工业大学学报, 2010, 42(6): 855-863 Ren Nanqi, Guo Wanqian, Liu Bingfeng. Development and application prospect of bio-hydrogen production technology[J]. Journal of Harbin Institute of Technology, 2010, 42(6): 855-863 (in Chinese)
[6] Feng Y, Yang Q, Wang X, et al. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells[J]. Journal of Power Sources, 2010, 195(7): 1 841-1 844
[7] Liu J, Liu J, He W, et al. Enhanced electricity generation for microbial fuel cell by using electrochemical oxidation to modify carbon cloth anode[J]. Journal of Power Sources, 2014, 265: 391-396
[8] Wang X, Cheng S, Feng Y, et al. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells[J]. Environmental Science & Technology, 2009, 43(17): 6 870-6 874
[9] Wang X, Feng Y, Liu J, et al. Power generation using adjustable Nafion/PTFE mixed binders in air-cathode microbial fuel cells[J]. Biosensors & Bioelectronics, 2010, 26(2): 946-948
[10] Shi X, Feng Y, Wang X, et al. Application of nitrogen-doped carbon powders as low-cost and durable cathodic catalyst to air-cathode microbial fuel cells[J]. Bioresource Technology, 2012, 108: 89-93
[11] Feng Y, Shi X, Wang X, et al. Effects of sulfide on microbial fuel cells with platinum and nitrogen-doped carbon powder cathodes[J]. Biosensors & Bioelectronics, 2012, 35(1): 413-415
[12] Liu J, Feng Y, Wang X, et al. The effect of water proofing on the performance of nickel foam cathode in microbial fuel cells[J]. Journal of Power Sources, 2012, 198: 100-104
[13] Liu J, Feng Y, Wang X, et al. The use of double-sided cloth without diffusion layers as air-cathode in microbial fuel cells[J]. Journal of Power Sources, 2011, 196(20): 8 409-8 412
[14] Dong H, Yu H, Wang X, et al. A novel structure of scalable air-cathode without Nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells[J]. Water Research, 2012, 46(17): 5 777-5 787
[15] Li D, Qu Y, Liu J, et al. Using ammonium bicarbonate as pore former in activated carbon catalyst layer to enhance performance of air cathode microbial fuel cell[J]. Journal of Power Sources, 2014, 272: 909-914
[16] Yang Q, Feng Y, Logan B E. Using cathode spacers to minimize reactor size in air cathode microbial fuel cells[J]. Bioresour Technol, 2012, 110: 273-279
[17] Feng Y, He W, Liu J, et al. A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment[J]. Bioresource Technology, 2014, 156: 132-138
[18] Dong Y, Qu Y, He W, et al. A 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode[J]. Bioresource Technology, 2015. doi:10.1016/j.biortech.2015.06.026
[19] Yang Q, Feng Y, Logan B E. Using cathode spacers to minimize reactor size in air cathode microbial fuel cells[J]. Bioresource Technology, 2012, 110: 273-277
[20] Oswald W J, Gotaas H B. Photosynthesis in sewage treatment[J]. Trans Am Soc Civ Eng, 1957, 122: 73-105
[21] Feng Y, Li C, Zhang D. Lipid production of chlorella vulgaris cultured in artificial wastewater medium[J]. Bioresource Technology, 2011, 102(1): 101-105
[22] Li C, Yu Y, Zhang D, et al. Combined effects of carbon, phosphorus and nitrogen on lipid accumulation of Chlorella vulgaris in mixotrophic culture[J]. Journal of Chemical Technology and Biotechnology, 2015. doi: 10.1002/JCTB.4623,2015
[23] Li X, Hu H, Yang J. Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga, Scenedesmus sp LX1, growing in secondary effluent[J]. New Biotechnology, 2010, 27(1): 59-63
[24] Yoshihara K I, Nagase H, Eguchi K, et al. Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor[J]. Journal of Fermentation and Bioengineering, 1996, 82(4): 351-354
[25] Nagase H, Yoshihara K, Eguchi K, et al. Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae[J]. Biochemical Engineering Journal, 2001, 7(3): 241-246
[26] Nagase H, Eguchi K, Yoshihara K, et al. Improvement of microalgal NOx removal in bubble column and airlift reactors[J]. Journal of Fermentation and Bioengineering, 1998, 86(4): 421-423
[27] Jin H, Santiago D E O, Park J, et al. Enhancement of nitric oxide solubility using Fe(II)EDTA and its removal by green algae Scenedesmus sp[J]. Biotechnology and Bioprocess Engineering, 2008, 13(1): 48-52
[28] Jiang Y, Zhang W, Wang J, et al. Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus[J]. Bioresource Technology, 2013, 128: 359-364
[29] Zhang X, Chen H, Chen W, et al. Evaluation of an oil-producing green alga chlorella sp C2 for biological DeNO(x) of industrial flue gases[J]. Environmental Science & Technology, 2014, 48(17): 10 497-10 504
[30] Zhang D, Yu Y, Li C, et al. Factors affecting microalgae harvest efficiencies using electro-coagulation-flotation for lipid extraction[J]. RSC Adv, 2015, 5(8): 5 795-5 800
[31] 祝贵兵, 彭永臻, 郭建华. 短程硝化反硝化生物脱氮技术[J]. 哈尔滨工业大学学报, 2008, 40(10): 1 552-1 557 Zhu Guibing, Peng Yongzhen, Guo Jianhua. Biological nitrogen removalwith nitrification and denitrification via nitrite pathway[J]. Journal of Harbin Institute of Technology, 2008, 40(10): 1 552-1 557(in Chinese)
[32] Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589-596
[33] van der Star W R L, Abma W R, Blommers D, et al. Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam[J]. Water Research, 2007, 41(18): 4 149-4 163
[34] 黄梅, 周少奇. 同时硝化反硝化脱氮机理及影响因素分析[J]. 环境卫生工程, 2006, 14(5): 22-25 Huang Mei, Zhou Shaoqi. Analysis on mechanism and affecting factors of nitrogen removal by simultaneous nitrification and denitrification[J]. Environmental Sanitation Engineering, 2006, 14(5): 22-25(in Chinese)
[35] Battistoni P, De Angelis A, Pavan P, et al. Phosphorus removal from a real anaerobic supernatant by struvite crystallization[J]. Water Research, 2001, 35(9): 2 167-2 178
[36] Lesjean B, Gnirss R, Adam C, et al. Enhanced biological phosphorus removal process implemented in membrane bioreactors to improve phosphorous recovery and recycling[J]. Water Science and Technology, 2003, 48(1): 87-94
[37] 刘汝鹏, 曲莹, 王全勇, 付成胜, 王新伟. 污水处理厂回收磷的方法及工艺探讨[J]. 水处理技术, 2011, 37(2): 9-13 Liu Rupeng, Qu Ying, Wang Quanyong, et al. Methods and processes of phosphorus recovery from wastewater treatment plants[J]. Technology of Water Treatment, 2011, 37(2): 9-13(in Chinese)
[38] 郝晓地, 甘一萍. 排水研究新热点——从污水处理过程中回收磷[J]. 给水排水, 2003, 29(1): 20-24 Hao Xiaodi, Gan Yipin.Phosphorus recovery in wastewater treatment[J]. Water and Wastewater Engineering, 2003, 29(1): 20-24(in Chinese)
[39] Munch E V, Barr K. Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams[J]. Water Research, 2001, 35(1): 151-159
[40] Kney A D, Zhao D. A pilot study on phosphate and nitrate removal from secondary wastewater effluent using a selective ion exchange process[J]. Environmental Technology, 2004, 25(5): 533-542
[41] 邓耀杰, 李平, 朱凡. 以回用为目标的污水深度处理组合工艺及其发展[J]. 环境工程, 2005, 3: 10-14
[42] Tomaszewska M, Mozia S. Removal of organic matter from water by PAC/UF system[J]. Water Research, 2002, 36(16): 4 137-4 143
[43] Chung J, Kim J O. Wastewater treatment using membrane bioreactor and reverse osmosis process[J]. Desalination and Water Treatment, 2013, 51(25/27): 5 298-5 306
[44] Macova M, Escher B I, Reungoat J, et al. Monitoring the biological activity of micropollutants during advanced wastewater treatment with ozonation and activated carbon filtration[J]. Water Research, 2010, 44(2): 477-492
[45] Andreozzi R, Caprio V, Insola A, et al. Advanced oxidation processes (AOP) for water purification and recovery[J]. Catalysis Today, 1999, 53(1): 51-59
[46] Kohler C, Venditti S, Igos E, et al. Elimination of pharmaceutical residues in biologically pre-treated hospital wastewater using advanced UV irradiation technology: A comparative assessment[J]. Journal of Hazardous Materials, 2012, 239: 70-77
[47] Schulze-Hennings U, Pinnekamp J. Response surface method for the optimisation of micropollutant removal in municipal wastewater treatment plant effluent with the UV/H2O2 advanced oxidation process[J]. Water Science and Technology, 2013, 67(9): 2 075-2 082
|