[1] WHO. Indoor air quality organic pollutants. Euro reports and studies No. 111[S]. 1989
[2] Barletta B, Meinardi S, Sherwood R F, et al. Volatile organic compounds in 43 Chinese cities[J]. Atmos Environ, 2005, 39(32): 5 979-5 990
[3] 闫雁, 王志辉, 白郁华, 等. 中国植被VOC排放清单的建立[J]. 中国环境科学, 2005, 25(1): 110-114 Yan Yan, Wang Zhihui, Bai Yuhua, et al. Establishment of vegetation VOC emission inventory in China[J]. China Environmental Science, 2005, 25(1): 110-114(in Chinese)
[4] Wang Z, Bai Y, Zhang S. A biogenic volatile organic compounds emission inventory for Beijing[J]. Atmos Environ, 2003, 37(27): 3 771-3 782
[5] 王宝庆, 马广大, 陈剑宁. 挥发性有机废气净化技术研究进展[J]. 环境污染治理技术与设备,2003, 4(5): 47-51 Wang Baoqing, Ma Guangda, Chen Jianning. Development in research of technology for purifying volatile organic compounds from exhaust gases[J]. Techniques and Equipment for Environmental Pollution Control, 2003, 4(5): 47-51(in Chinese)
[6] Jones A P. Indoor air quality and health[J]. Atmos, Environ,1999, 33: 4 535-4 564
[7] Wolkoff P, Wilkins C K, Clausen P A, et al. Organic compounds in office environments-sensory irritation, odor, measurements and the role of reactive chemistry[J]. Indoor Air, 2006, 16: 7-19
[8] Bernstein J A, Alexis N, Bacchus H, et al. The health effects of nonindustrial indoor air pollution[J]. J Allergy Clin Immun, 2008, 121: 585-591
[9] Cometto-Muniz J E, Cain W S, Abraham M H. Detection of single and mixed VOCs by smell and by sensory irritation[J]. Indoor Air, 2004, 14: 108-117
[10] 林立, 鲁君, 马英歌, 等. 国内外VOCs排放管理控制历程[J]. 环境监测管理与技术, 2011, 23(5): 12-16 Lin Li, Lu Jun, Ma Yingge, et al. Reviews of VOCs control at home and abroad[J]. The Administration and Technique of Environmental Monitoring, 2011, 23(5): 12-16(in Chinese)
[11] 德利克·埃尔森. 烟雾警报城市空气质量管理[M]. 北京: 科学出版社, 1999
[12] Parmar G R, Rao N N. Emerging control technologies for volatile organic compounds[J]. Crit Rev Environ Sci Technol, 2009, 39: 41-78
[13] Pires J A, Carvalho M B. Adsorption of volatile organic compounds in Y zeolites and pillared clays[J]. Micropor Mesopor Mat, 2001, 43: 277-287
[14] Cheng H, Reinhard M. Sorption of trichloroethylene in hydrophobic micropores of dealuminated Y zeolites and natural minerals[J]. Environ Sci Technol, 2006, 40: 7 694-7 701
[15] Liu P, Long C, Li Q, et al. Adsorption of trichloroethylene and benzene vapors onto hypercrosslinked polymeric resin[J]. J Hazard Mater, 2009, 166: 46-51
[16] Das D, Gaur V, Erma N. Removal of volatile organic compound by activated carbon fiber[J]. Carbon, 2004, 42: 2 949-2 962
[17] Gupta K N, Rao N J, Agarwal G K. Gaseous phase adsorption of volatile organic compounds on granular activated carbon[J]. Chem Eng Commun, 2015, 202: 384-401
[18] Lee J Y, Farha O K, Roberts J, et al. Metal-Organic framework materials as catalysts[J]. Chem Soc Rev, 2009, 38: 1 450-1 459
[19] Murray L J, Dinca M, Long J R, et al. Hydrogen storage in metal-organic frameworks[J]. Chem Soc Rev, 2009, 38(5): 1 294-1 314
[20] Li J, Sculley J, Zhou H. Metal-Organic frameworks for separations[J]. Chem Rev, 2012, 112(2): 869-932
[21] Li J, Kuppler R J, Zhou H. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem Soc Rev, 2009, 38(5): 1 477-1 504
[22] Khan N A, Hasan Z, Jhung S H. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review[J]. J Hazard Mater, 2013, 244/245: 444-456
[23] The IUPAC project "Coordination polymers and metal organic frameworks: Terminology and nomenclatureguidelines"[R]. Chemistry International. Jan-Feb 2010, 32 (1) and www.iupac.org/web/ins/2009-012-2-200
[24] Yaghi O M, Keeffe M O, Ockwing N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423: 705-714
[25] Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers[J]. Angew Chem Int Ed, 2004, 43(18): 2 334-2 375
[26] Furukawa H, Cordova K E, Yaghi O M, et al. The chemistry and applications of metal-organic frameworks[J]. doi:10.1126/science, 1230444
[27] Llewellyn P L, Bourrelly S, Serre C, et al. High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101[J]. Langmuir, 2008, 24: 7 245-7 250
[28] Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295: 469-472
[29] Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003, 300: 1 127-1 129
[30] Liu Y, Xuan W, Cui Y. Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation[J]. Adv Mater, 2010, 22(37): 4 112-4 135
[31] Allendorf M D, Abauer C. Luminescent metal-organic frameworks[J]. Chem Soc Rev, 2009, 38(5): 1 330-1 352
[32] Rosseinsky M J. Recent developments in metal-organic framework chemistry: Design, discovery, permanent porosity and flexibility[J]. Micropor Mesopor Mat, 2004, 73(1/2): 15-30
[33] Kurmoo M. Magnetic metal-organic frameworks[J]. Chem Soc Rev, 2009, 38(5): 1 353-1 379
[34] Meek S T, Greathouse J A. Metal-Organic frameworks: A rapidly growing class of versatile nanoporous materials[J]. Adv Mater, 2011, 23(2): 249-267
[35] Buser H J, Schwarzenbach D, Petter W, et al. Crystal-Structure of Prussian blue-Fe4[Fe(CN)6]3·xH2O[J]. Inorg Chem, 1977, 16: 2 704-2 710
[36] Kinoshita Y, Matsubara I, Higuchi T, et al. The crystal structure of bis(adiponitrilo)-copper(I) nitrate[J]. Chem Soc Jpn, 1959, 32: 1 221-1 226
[37] Wells A F. Three dimensional nets and polyhedral[M]. New York: Raven Press, 1977
[38] Schmid G M. Crystal engineering in porous materials[J]. J Pure Appl Chem, 1971, 27: 647-651
[39] Wells A F. Structrual inorganic chemistry[M]. New York: Oxford University Press, 1983
[40] Hoskins B F, Robson R. Infinite polymeric frameworks consisting of 3 dimensionally linked rod-like segments[J]. J Am Chem Soc, 1989, 111: 5 962-5 964
[41] Hoskins B F, Robson R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3-D-linked molecular rods-a reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuZn (CN)4] and Cu[4,4',4'',4'''-tetracyano tetraphenylmethane] BF4·xC6H5NO2[J]. J Am Chem Soc, 1990, 112: 1 546-1 554
[42] Schnobrich J K, Koh K, Sura K N, et al. A framework for predicting surface areas in microporous coordination polymers [J]. Langmuir, 2010, 26: 5 808-5 814
[43] Chen B, Eddaoudi M, Hyde S T, et al. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores[J]. Science, 2001, 291: 1 021-1 023
[44] Yaghi O M, Li G, Li H. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378: 703-706
[45] Yaghi O M, Jernigan R, Li H L, et al. Construction of a new open-framework solid from 1,3,5-cyclohexanetri carboxylateand zinc(II) building blocks[J]. J Chem Soc, 1997: 2 383-2 384
[46] Eddaoudi M, Li H, Yaghi O M, et al. Design and synthesis of metal-carboxylate frameworks with permanent microporosity[J].Topic in Catalysis, 1999, 9: 105-111
[47] Li H, Eddaoudi M, Yaghi O M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402: 276-279
[48] Saha D, Wei Z, Deng S. Hydrogen adsorption equilibriumand kinetics in metal-organic framework (MOF-5) synthesized with DEF approach[J]. Sep Purif Technol, 2009, 64(3): 280-287
[49] Chae H K, Siberio-Perez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427: 523-527
[50] Ferey G, Draznieks C M, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309: 2 040-2 042
[51] Furukawa H, Ko N, Go Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science, 2010, 329: 424-428
[52] Kitagawa S, Kondo M. Functional micropore chemistry of crystalline metal complex-assembled compounds[J]. Bull Chem Soc Jpn, 1998, 71(8): 1 739-1 753
[53] Corma A, García H, Xamena F X. Engineering metal organic frameworks for heterogeneous catalysis[J]. Chem Rev, 2010, 110 (8): 4 606-4 655
[54] Feng P, Bu X, Stucky G D. Hydrothermal syntheses and structural characterization of zeolite analogue compounds based on cobalt phosphate[J]. Nature, 1997, 388: 735-741
[55] Chui S S Y, Lo S M F, Charmant J P H, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283: 1 148-1 150
[56] Yan B, Ma R, Chu Z, et al. 2D Cationic metal-organic frameworks of Ag with mixed ligands (semi-rigid dipyridyl, 3-pmpmd, and diphosphine, dppe) [J]. J Inorg Organomet Polym Mater, 2010, 20: 809-815
[57] Habib H A, Sanchiz J, Janiak C. Magnetic and luminescence properties of Cu(II), Cu(II)4O4 core, and Cd(II) mixed-ligand metal-organic frameworks constructed from 1, 2-bis(1, 2, 4-triazol-4-yl)ethane and benzene-1, 3, 5-tricarboxylate[J]. Inorg Chim Acta, 2009, 362: 2 452-2 460
[58] Chen J, Natarajan S, Thomas J M, et al. A novel open-framework cobalt phosphate containing a tetrahedrally coordinated cobalt(II) center: CoPO4·0.5 C2H10N2[J]. Angew Chem Int Edit, 1994, 33: 639-640
[59] Natarajan S,Neeraj S,Choudhury A,et al. Three-Dimensional open-framework cobalt(II) phosphates by novel routes[J]. Inorg Chem, 2000, 39: 1 426-1 433
[60] Szeto K C,Prestipino C,Lamberti C,et al. Characterization of a new porous Pt-containing metal-organic framework containing potentially catalytically active sites: local electronic structure at the metal centers[J]. Chem Mater, 2006, 19: 211-220
[61] Guillou N,Gao Q,Nogues M,et al. Zeolitic and magnetic properties of a 24-membered ring porous nickel(II) phosphate, VSB-1[J]. Comptes Rendus de I'Académie des Sciences-Series II C-Chemistry, 1999, 2: 387-392
[62] Hou K, Bai F, Xing Y, et al. A novel family of 3D photoluminescent lanthanide-bta-flexible MOFs constructed from 1,2,4,5-benzene tetracarboxylic acid and different spanning of dicarboxylate acid ligands[J]. Cryst Eng Comm, 2011, 13: 3 884-3 894
[63] Bux H, Liang F, Li Y, et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis[J]. J Am Chem Soc, 2009, 131: 16 000-16 001
[64] Aromí G, Barrios L A, Roubeau O, et al. Triazoles and tetrazoles: Prime ligands to generate remarkable coordination materials[J]. Coordin Chem Rev, 2011, 255: 485-546
[65] 魏文英, 方键, 孔海宁, 等. 金属有机骨架材料的合成及应用[J]. 化学进展, 2005, 17: 1 110-1 115 Wei Wenying, Fang Jian, Kong Haining, et al. Synthesis and applications for materials of metallorganic frameworks[J]. Progress in Chemistry, 2005, 17: 1 110-1 115(in Chinese)
[66] Gadipelli S, Guo Z. Postsynthesis annealing of MOF-5 remarkably enhances the framework structural stability and CO2 uptake[J]. Chem Mater, 2014, 26: 6 333-6 338
[67] Walton K S, Snurr R Q. Applicability of the BET method for determining surface areas of microporous metal-organic frameworks[J]. J Am Chem Soc, 2007, 129(27): 8 552-8 556
[68] Ferey G. Hybrid porous solids: Past, present, future[J]. Chem Soc Rev, 2008, 37: 191-214
[69] Friscic T, Fabian L. Mechanochemical conversion of a metal oxide into coordination polymers and porous frameworks using liquid-assisted grinding (LAG) [J]. Cryst Eng Comm, 2009, 11: 743-745
[70] Cabrera M F, Nicholson D M, Sumpte B G. Electronic structure and properties of isoreticular metal-organic frameworks: The case of M-IRMOF (M=Zn,Cd,Be,Mg, and Ca)[J]. J Chem Phys, 2005, 123: 1 247-1 252
[71] Kupplera R J, Timmonsb D J, Fang Q R, et al. Potential applications of metal-organic frameworks[J]. Coord Chem Rev, 2009, 253(23/24): 3 042-3 066
[72] Yaghi O M, Park K S, Ni Z, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proc Natl Acad Sci USA, 2006, 103: 10 186-10 191
[73] Mueller U, Schubert M, Teich F, et al. Metal-Organic frameworks-prospective industrial applications[J]. J Mater Chem, 2006, 16: 626-636
[74] Xu H, Su Z, Shao K, et al. A novel strong fluorescent three-dimensional supramolecular coordination polymer based on bridging terephthalate[J]. Inorg Chem Commun, 2004, 7: 260-263
[75] Loiseau T, Ludovic L L, Volkringer C, et al. MIL-96, a porous aluminum trimesate 3D structure on structed from a hexagonal network of 18-membered rings and trinuclearunits[J]. J Am Chem Soc, 2006, 128: 10 223-10 230
[76] Vaidhyanathan R, Natarajan S, Cheetham A K, et al. New open-framework zinc oxalates synthesized in the presence of structure-directing organic amines[J]. Chem Mater, 1999, 11: 3 636-3 642
[77] Tian Y, Zhao Y, Chen Z, et al. Design and generation of extended zeolitic metal-organic frameworks (ZMOFs): Synthesis and crystal structures of zinc(II) imidazolate polymers with zeolitic topologies[J]. Chem Eur J, 2007, 13: 4 146-4 154
[78] Wang X, Ma S, Sun D, et al. A mesoporous metal-organic framework with permanent porosity[J]. J Am Chem Soc, 2006, 128: 16 474-16 475
[79] Wang Z, Tanabe K K, Cohen S M. Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on Reactivity[J]. Inorg Chem, 2009, 48: 295-301
[80] Zhang J, Wu T, Chen S, et al. Versatile structure-directing roles of deep-eutectic solvents and their implication in the generation of porosity and open metal sites for gas storage[J]. Angew Chem Int Ed, 2009, 48: 3 486-3 490
[81] Lin Z, Slawin A M Z, Morris R E. Chiral induction in the ionothermal synthesis of a 3-D coordination polymer[J]. J Am Chem Soc, 2007, 129(16): 4 880-4 881
[82] Kim S H, Yang S, Kim J, et al. Sonochemical synthesis of Cu-3(BTC)(2) in a deep eutectic mixture of choline chloride/dimethylurea[J]. Bull Korean Chem Soc, 2011, 32: 2 783-2 786
[83] Biemmi E, Christian S, Stock N, et al. High-Throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-l[J]. Micropor Meospor Mater, 2009, 117: 11l-117
[84] Li Z, Qin L, Xu T, et al. Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method[J]. Mater Lett, 2009, 63: 78-80
[85] Yang G, Hou L, Ma L. Investigation on the prime factors influencing the formation of entangled metal-organic frameworks[J]. Cryst Eng Comm, 2013, 14: 2 561-2 578
[86] Chen B, Ma S, Zapata F, et al. Hydrogen adsorption in an interpenetrated dynamic metal-organic framework[J]. Inorg Chem, 2006, 45: 5 718-5 723
[87] Gerardin C, In M, Allouche L, et al. In situ pH probing of hydrothermal solutions by NMR[J]. Chem Mater, 1999, 11: 1 285-1 292
[88] 孙茜. 金属-有机骨架材料(MIL-101)对典型挥发性有机物(VOCs)的吸附性能及机理[D]. 杭州: 浙江大学, 2013
[89] Forster P M, Burbank A R, Livage C, et al. The role of temperature in the synthesis of hybrid inorganic-organic materials: The example of cobalt succinates[J]. Chem Commun, 2004: 368-369
[90] Forster P M, Stoek N, Cheetham A K. A high-throughput investigation of the role of pH, temperature, eoneentration, and time on the synthesis of hybrid inorganie-organic materials[J]. Angew Chem Int Edit, 2005, 44(46): 7 608-7 611
[91] Livage C, Egger C, Ferey G. Hybrid open frameworks (MIL-n). Part 5-Synthesis and crystal structure of MIL-9: A new three-dimensional ferrimagnetic cobalt (II) carboxylate with a two-dimensional array of edge-sharing Co octahedra with 12-membered rings[J]. J Mater Chem, 1998, 8: 2 743-2 747
[92] Livage C, Egger C, Ferey G. Hybrid open networks (MIL-16): Synthesis, crystal structure, and ferrimagnetism of Co4(OH)2(H2O)2(C4H4O4)3·2H2O, a new layered cobalt (II) carboxylate with 14-membered ring channels[J]. Chem Mater, 1999, 11: 1 546-1 550
[93] Serre C, Millange F, Ferey G, et al. A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units[J]. Angew Chem Int Edit, 2004, 43: 6 286-6 289
[94] Li Z, Qiu L, Wang W, et al. Fabrication of nanosheets of a fluorescent metal-organic framework [Zn(BDC)(H2O)]n(BDC=1, 4-benzene dicarboxylate): Ultrasonic synthesis and sensing of ethylamine[J]. Inorg Chem Commun, 2008, 11: 1 375-1 377
[95] Stock N, Biswas S. Synthesis of metal-organic frameworks(MOFs): Routes to various MOF topologies, morphologies, and composites[J]. Chem Rev, 2012, 112: 933-969
[96] 杨志. 新型金属-有机骨架化合物的合成、结构及其性能表征[D]. 长春: 吉林大学,2012
[97] Huang L, Wang H, Chen J, et al. Synthesis, morphology control, and properties of porous metal-organic coordination polymers[J]. Micropor Mesopor Mat, 2003, 58: 105-114
[98] Hunt D J, Yaghi O M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0[J]. Tetrahedron, 2008, 64: 8 553-8 557
[99] Cravillon J, Muenzer S, Lohmeier S J, et al. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework[J]. Chem Mater, 2009, 21: 1 410-1 412
[100] Lee Y R, Kim J, Ahn W S. Synthesis of metal-organic frameworks: A mini review[J]. Korean J Chem Eng, 2013, 30(9): 1 667-1 680
[101] Kaye S S, Dailly A, Yaghi O M, et al. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)(3)(MOF-5) [J]. J Am Chem Soc, 2007, 129(46): 14 176-14 177
[102] Jhung S H, Lee J H, Yoon J W, et al. Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability[J]. Adv Mater, 2007, 19: 121-124
[103] El-Shalawy I I, Uddin K, Miyazaki T, et al. Adsorption of ethanol onto phenol resin based adsorbents for developing next generation cooling systems[J]. Int J Heat Mass Tran, 2015, 81: 171-178
[104] Suslick K S. The sonochemical hot spot[J]. Acoust Soc Am,1991, 89 (4B): 1 885-1 886
[105] 巴斯福股份公司. 结晶多孔金属有机骨架材料的电化学生产方法: 中国, 200480034679.0[P].2014-11-22
[106] Pichon A, Lazuen-Garay A, James S L. Solvent-Free synthesis of a microporous metal-organic framework[J]. Cryst Eng Comm, 2006, 8: 211-214
[107] Pichon A, James S L. An array-based study of reactivity under solvent-free mechanochemical conditions-insights and trends[J]. Cryst Eng Comm, 2008, 10: 1 839-1 847
[108] Shi Q, Chen Z, Song Z, et al. Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribologicalbehaviors[J]. Angew Chem Int Ed, 2011, 50: 672-675
[109] Ahmed I, Jeon J, Khan N A, et al. Synthesis of a metal-organic framework, iron-benezenetricarboxylate, from dry gels in the absence of acid and salt[J]. Cryst Growth Des, 2012, 12: 5 878-5 881
[110] Zhang Z, Atkinson J D, Jiang B, et al. NO oxidation by microporous zeolites: Isolating the impact of pore structure to predict NO conversion[J]. Appl Catal B-Environ, 2015, 163: 573-583
[111] Liu X, Zhang C, Geng Z, et al. High-Pressure hydrogen storage and optimizing fabrication of corncob-derived activated carbon[J]. Micropor Mesopor Mat, 2014, 194: 60-65
[112] Britt D, Tranchemontagne D, Yaghi O M. Metal-Organic frameworks with high capacity and selectivity for harmful gases[J]. P Natl Acad Sci USA, 2008, 105: 11 623-11 627
[113] Yang K, Sun Q, Xue F, et al. Adsorption of volite organic compounds by metal-organic frameworks MIL-101: Influnce of molecular size and shape[J]. J Hazard Mater, 2011, 195: 124-131
[114] Stallmach F, Groger S, Yaghi O M, et al. NMR studies on the diffusion of hydrocarbons on the metal-organic framework material MOF-5[J]. Angew Chem Int Ed, 2006, 45: 2 123-2 126
[115] Trens P, Tanchoux N, Papineschi P M, et al. Confinements effects in MCM-41-type materials: Comparison of the energetics of n-hexane and 1-hexene adsorption[J]. Micropor Mesopor Mat, 2005, 86: 354-363
[116] 黄思思. 金属-有机骨架材料——MOF-5和MIL-101的合成及其对VOCs的吸附/脱附性能[D]. 广州:华南理工大学, 2010
[117] Chen B, Eddaoudi M, Yaghi O M, et al. Cu2(ATC)·6H2O: Design of open metal sites in porous metal-organic crystals (ATC:1,3,5,7-adamantane tetracarboxylate) [J]. J Am Chem Soc, 2000, 122: 11 559-11 560
[118] Yang K, Xue F, Sun Q, et al. Adsorption of volatile organic compounds by metal-organic frameworks MOF-177[J]. J Environ Chem Eng, 2013, 1(1): 713-718
[119] Trung T K, Ramsahye N A, Ferey G, et al. Adsorption of C5-C9 hydrocarbons in microporous MOFs MIL-100(Cr) and MIL-101(Cr): A manometricstudy[J]. Micropor Mesopor Mat, 2010, 134: 134-140
[120] Zhao Z, Wang S, Yang Y, et al. Competitive adsorption and selectivity of benzene and water vapor on the microporous metal organic frameworks (HKUST-1) [J]. J Chem Eng, 2015, 259: 79-89
[121] Xian S, Yu Y, Xiao J, et al. Competitive adsorption of water vapor with VOCs dichloroethane, ethyl acetate and benzene on MIL-101(Cr) in humid atmosphere[J]. RSC Adv, 2015, 5: 1 827-1 834
[122] Nicolau M P M, Barcia P S, Gallegos J M, et al. Single-and multicomponent vapor-phase adsorption of xylene isomers and ethylbenzene in a microporous metal-organic framework[J]. J Phys Chem C, 2009, 113: 13 173-13 179
[123] Gu Z, Yan X. Metal-Organic framework MIL-101 for high-resolution gas-chromatographic separation of xylene isomers and ethylbenzene[J]. Angew Chem Int Edit, 2010, 49: 1 477-1 480
[124] Bradley R H, Smith M W, Andreu A, et al. Surface studies of novel hydrophobic active carbons[J]. Appl Surf Sci, 2011, 257: 2 912-2 919
[125] Xiao Y, Yang Q, Liu D, et al. Computational design of metal-organic frameworks for aniline recovery from aqueous solution[J]. Cryst Eng Comm, 2013, 15: 9 588-9 595
[126] Huo S, Yan X. Facile magnetization of metal-organic framework MIL-101 for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples[J]. Analyst, 2012, 137: 3 445-3 451
|